Home
Fictions/Novels
Short Stories
Poems
Essays
Plays
Nonfictions
 
Authors
All Titles
 






In Association with Amazon.com

Home > Authors Index > Charles Darwin > Different Forms of Flowers on Plants of the Same Species > This page

The Different Forms of Flowers on Plants of the Same Species, a non-fiction book by Charles Darwin

Chapter 5. Illegitimate Offspring Of Heterostyled Plants

< Previous
Table of content
Next >
________________________________________________
_ CHAPTER V. ILLEGITIMATE OFFSPRING OF HETEROSTYLED PLANTS Illegitimate offspring from all three forms of Lythrum salicaria. Their dwarfed stature and sterility, some utterly barren, some fertile. Oxalis, transmission of form to the legitimate and illegitimate seedlings. Primula Sinensis, Illegitimate offspring in some degree dwarfed and infertile. Equal-styled varieties of P. Sinensis, auricula, farinosa, and elatior. P. vulgaris, red-flowered variety, Illegitimate seedlings sterile. P. veris, Illegitimate plants raised during several successive generations, their dwarfed stature and sterility. Equal-styled varieties of P. veris. Transmission of form by Pulmonaria and Polygonum. Concluding remarks. Close parallelism between illegitimate fertilisation and hybridism. We have hitherto treated of the fertility of the flowers of heterostyled plants, when legitimately and illegitimately fertilised. The present chapter will be devoted to the character of their offspring or seedlings. Those raised from legitimately fertilised seeds will be here called LEGITIMATE SEEDLINGS or PLANTS, and those from illegitimately fertilised seeds, ILLEGITIMATE SEEDLINGS or PLANTS. They differ chiefly in their degree of fertility, and in their powers of growth or vigour. I will begin with trimorphic plants, and I must remind the reader that each of the three forms can be fertilised in six different ways; so that all three together can be fertilised in eighteen different ways. For instance, a long-styled form can be fertilised legitimately by the longest stamens of the mid-styled and short-styled forms, and illegitimately by its own- form and mid-length and shortest stamens, also by the mid-length stamens of the mid-styled and by the shortest stamens of the short-styled form; so that the long-styled can be fertilised legitimately in two ways and illegitimately in four ways. The same holds good with respect to the mid-styled and short-styled forms. Therefore with trimorphic species six of the eighteen unions yield legitimate offspring, and twelve yield illegitimate offspring. I will give the results of my experiments in detail, partly because the observations are extremely troublesome, and will not probably soon be repeated-- thus, I was compelled to count under the microscope above 20,000 seeds of Lythrum salicaria--but chiefly because light is thus indirectly thrown on the important subject of hybridism. Lythrum salicaria. Of the twelve illegitimate unions two were completely barren, so that no seeds were obtained, and of course no seedlings could be raised. Seedlings were, however, raised from seven of the ten remaining illegitimate unions. Such illegitimate seedlings when in flower were generally allowed to be freely and legitimately fertilised, through the agency of bees, by other illegitimate plants belonging to the two other forms growing close by. This is the fairest plan, and was usually followed; but in several cases (which will always be stated) illegitimate plants were fertilised with pollen taken from legitimate plants belonging to the other two forms; and this, as might have been expected, increased their fertility. Lythrum salicaria is much affected in its fertility by the nature of the season; and to avoid error from this source, as far as possible, my observations were continued during several years. Some few experiments were tried in 1863. The summer of 1864 was too hot and dry, and, though the plants were copiously watered, some few apparently suffered in their fertility, whilst others were not in the least affected. The years 1865 and, especially, 1866, were highly favourable. Only a few observations were made during 1867. The results are arranged in classes according to the parentage of the plants. In each case the average number of seeds per capsule is given, generally taken from ten capsules, which, according to my experience, is a nearly sufficient number. The maximum number of seeds in any one capsule is also given; and this is a useful point of comparison with the normal standard--that is, with the number of seeds produced by legitimate plants legitimately fertilised. I will give likewise in each case the minimum number. When the maximum and minimum differ greatly, if no remark is made on the subject, it may be understood that the extremes are so closely connected by intermediate figures that the average is a fair one. Large capsules were always selected for counting, in order to avoid over-estimating the infertility of the several illegitimate plants. In order to judge of the degree of inferiority in fertility of the several illegitimate plants, the following statement of the average and of the maximum number of seeds produced by ordinary or legitimate plants, when legitimately fertilised, some artificially and some naturally, will serve as a standard of comparison, and may in each case be referred to. But I give under each experiment the percentage of seeds produced by the illegitimate plants, in comparison with the standard legitimate number of the same form. For instance, ten capsules from the illegitimate long-styled plant (Number 10), which was legitimately and naturally fertilised by other illegitimate plants, contained on an average 44.2 seeds; whereas the capsules on legitimate long-styled plants, legitimately and naturally fertilised by other legitimate plants, contained on an average 93 seeds. Therefore this illegitimate plant yielded only 47 per cent of the full and normal complement of seeds. STANDARD NUMBER OF SEEDS PRODUCED BY LEGITIMATE PLANTS OF THE THREE FORMS, WHEN LEGITIMATELY FERTILISED. Long-styled form: Average number of seeds in each capsule, 93; Maximum number observed out of twenty-three capsules, 159. Mid-styled form: Average number of seeds, 130; Maximum number observed out of thirty-one capsules, 151. Short-styled form: Average number of seeds, 83.5; but we may, for the sake of brevity, say 83; Maximum number observed out of twenty-five capsules, 112. CLASSES 1 AND 2. ILLEGITIMATE PLANTS RAISED FROM LONG-STYLED PARENTS FERTILISED WITH POLLEN FROM THE MID-LENGTH OR THE SHORTEST STAMENS OF OTHER PLANTS OF THE SAME FORM. From this union I raised at different times three lots of illegitimate seedlings, amounting altogether to 56 plants. I must premise that, from not foreseeing the result, I did not keep a memorandum whether the eight plants of the first lot were the product of the mid-length or shortest stamens of the same form; but I have good reason to believe that they were the product of the latter. These eight plants were much more dwarfed, and much more sterile than those in the other two lots. The latter were raised from a long-styled plant growing quite isolated, and fertilised by the agency of bees with its own pollen; and it is almost certain, from the relative position of the organs of fructification, that the stigma under these circumstances would receive pollen from the mid-length stamens. All the fifty-six plants in these three lots proved long-styled; now, if the parent-plants had been legitimately fertilised by pollen from the longest stamens of the mid-styled and short-styled forms, only about one-third of the seedlings would have been long-styled, the other two-thirds being mid-styled and short-styled. In some other trimorphic and dimorphic genera we shall find the same curious fact, namely, that the long-styled form, fertilised illegitimately by its own-form pollen, produces almost exclusively long-styled seedlings. (5/1. Hildebrand first called attention to this fact in the case of Primula Sinensis ('Botanische Zeitung' January 1, 1864 page 5); but his results were not nearly so uniform as mine.) The eight plants of the first lot were of low stature: three which I measured attained, when fully grown, the heights of only 28, 29, and 47 inches; whilst legitimate plants growing close by were double this height, one being 77 inches. They all betrayed in their general appearance a weak constitution; they flowered rather later in the season, and at a later age than ordinary plants. Some did not flower every year; and one plant, behaving in an unprecedented manner, did not flower until three years old. In the two other lots none of the plants grew quite to their full and proper height, as could at once be seen by comparing them with the adjoining rows of legitimate plants. In several plants in all three lots, many of the anthers were either shrivelled or contained brown and tough, or pulpy matter, without any good pollen-grains, and they never shed their contents; they were in the state designated by Gartner as contabescent, which term I will for the future use. (5/2. 'Beitrage zur Kenntniss der Befruchtung' 1844 page 116.) In one flower all the anthers were contabescent excepting two which appeared to the naked eye sound; but under the microscope about two-thirds of the pollen-grains were seen to be small and shrivelled. In another plant, in which all the anthers appeared sound, many of the pollen- grains were shrivelled and of unequal sizes. I counted the seeds produced by seven plants (1 to 7) in the first lot of eight plants, probably the product of parents fertilised by their own-form shortest stamens, and the seeds produced by three plants in the other two lots, almost certainly the product of parents fertilised by their own-form mid-length stamens. [PLANT 1. This long-styled plant was allowed during 1863 to be freely and legitimately fertilised by an adjoining illegitimate mid-styled plant, but it did not yield a single seed-capsule. It was then removed and planted in a remote place close to a brother long-styled plant Number 2, so that it must have been freely though illegitimately fertilised; under these circumstances it did not yield during 1864 and 1865 a single capsule. I should here state that a legitimate or ordinary long-styled plant, when growing isolated, and freely though illegitimately fertilised by insects with its own pollen, yielded an immense number of capsules, which contained on an average 21.5 seeds. PLANT 2. This long-styled plant, after flowering during 1863 close to an illegitimate mid-styled plant, produced less than twenty capsules, which contained on an average between four and five seeds. When subsequently growing in company with Number 1, by which it will have been illegitimately fertilised, it yielded in 1866 not a single capsule, but in 1865 it yielded twenty-two capsules: the best of these, fifteen in number, were examined; eight contained no seed, and the remaining seven contained on an average only three seeds, and these seeds were so small and shrivelled that I doubt whether they would have germinated. PLANTS 3 AND 4. These two long-styled plants, after being freely and legitimately fertilised during 1863 by the same illegitimate mid-styled plant as in the last case, were as miserably sterile as Number 2. PLANT 5. This long-styled plant, after flowering in 1863 close to an illegitimate mid- styled plant, yielded only four capsules, which altogether included only five seeds. During 1864, 1865, and 1866, it was surrounded either by illegitimate or legitimate plants of the other two forms; but it did not yield a single capsule. It was a superfluous experiment, but I likewise artificially fertilised in a legitimate manner twelve flowers; but not one of these produced a capsule; so that this plant was almost absolutely barren. PLANT 6. This long-styled plant, after flowering during the favourable year of 1866, surrounded by illegitimate plants of the other two forms, did not produce a single capsule. PLANT 7. This long-styled plant was the most fertile of the eight plants of the first lot. During 1865 it was surrounded by illegitimate plants of various parentage, many of which were highly fertile, and must thus have been legitimately fertilised. It produced a good many capsules, ten of which yielded an average of 36.1 seeds, with a maximum of 47 and a minimum of 22; so that this plant produced 39 per cent of the full number of seeds. During 1864 it was surrounded by legitimate and illegitimate plants of the other two forms; and nine capsules (one poor one being rejected) yielded an average of 41.9 seeds, with a maximum of 56 and a minimum of 28; so that, under these favourable circumstances, this plant, the most fertile of the first lot, did not yield, when legitimately fertilised, quite 45 per cent of the full complement of seeds.] In the second lot of plants in the present class, descended from the long-styled form, almost certainly fertilised with pollen from its own mid-length stamens, the plants, as already stated, were not nearly so dwarfed or so sterile as in the first lot. All produced plenty of capsules. I counted the number of seeds in only three plants, namely Numbers 8, 9, and 10. [PLANT 8. This plant was allowed to be freely fertilised in 1864 by legitimate and illegitimate plants of the other two forms, and ten capsules yielded on an average 41.1 seeds, with a maximum of 73 and a minimum of 11. Hence this plant produced only 44 per cent of the full complement of seeds. PLANT 9. This long-styled plant was allowed in 1865 to be freely fertilised by illegitimate plants of the other two forms, most of which were moderately fertile. Fifteen capsules yielded on an average 57.1 seeds, with a maximum of 86 and a minimum of 23. Hence the plant yielded 61 per cent of the full complement of seeds. PLANT 10. This long-styled plant was freely fertilised at the same time and in the same manner as the last. Ten capsules yielded an average of 44.2 seeds, with a maximum of 69 and a minimum of 25; hence this plant yielded 47 per cent of the full complement of seeds.] The nineteen long-styled plants of the third lot, of the same parentage as the last lot, were treated differently; for they flowered during 1867 by themselves so that they must have been illegitimately fertilised by one another. It has already been stated that a legitimate long-styled plant, growing by itself and visited by insects, yielded an average of 21.5 seeds per capsule, with a maximum of 35; but, to judge fairly of its fertility, it ought to have been observed during successive seasons. We may also infer from analogy that, if several legitimate long-styled plants were to fertilise one another, the average number of seeds would be increased; but how much increased I do not know; hence I have no perfectly fair standard of comparison by which to judge of the fertility of the three following plants of the present lot, the seeds of which I counted. [PLANT 11. This long-styled plant produced a large crop of capsules, and in this respect was one of the most fertile of the whole lot of nineteen plants. But the average from ten capsules was only 35.9 seeds, with a maximum of 60 and a minimum of 8. PLANT 12. This long-styled plant produced very few capsules; and ten yielded an average of only 15.4 seeds, with a maximum of 30 and a minimum of 4. PLANT 13. This plant offers an anomalous case; it flowered profusely, yet produced very few capsules; but these contained numerous seeds. Ten capsules yielded an average of 71.9 seeds, with a maximum of 95 and a minimum of 29. Considering that this plant was illegitimate and illegitimately fertilised by its brother long-styled seedlings, the average and the maximum are so remarkably high that I cannot at all understand the case. We should remember that the average for a legitimate plant legitimately fertilised is 93 seeds.] CLASS 3. ILLEGITIMATE PLANTS RAISED FROM A SHORT-STYLED PARENT FERTILISED WITH POLLEN FROM OWN-FORM MID-LENGTH STAMENS. I raised from this union nine plants, of which eight were short-styled and one long-styled; so that there seems to be a strong tendency in this form to reproduce, when self-fertilised, the parent-form; but the tendency is not so strong as with the long-styled. These nine plants never attained the full height of legitimate plants growing close to them. The anthers were contabescent in many of the flowers on several plants. [PLANT 14. This short-styled plant was allowed during 1865 to be freely and legitimately fertilised by illegitimate plants descended from self-fertilised mid-, long- and short-styled plants. Fifteen capsules yielded an average of 28.3 seeds, with a maximum of 51 and a minimum of 11; hence this plant produced only 33 per cent of the proper number of seeds. The seeds themselves were small and irregular in shape. Although so sterile on the female side, none of the anthers were contabescent. PLANT 15. This short-styled plant, treated like the last during the same year, yielded an average, from fifteen capsules, of 27 seeds, with a maximum of 49 and a minimum of 7. But two poor capsules may be rejected, and then the average rises to 32.6, with the same maximum of 49 and a minimum of 20; so that this plant attained 38 per cent of the normal standard of fertility, and was rather more fertile than the last, yet many of the anthers were contabescent. PLANT 16. This short-styled plant, treated like the two last, yielded from ten capsules an average of 77.8 seeds, with a maximum of 97 and a minimum of 60; so that this plant produced 94 per cent of the full number of seeds. PLANT 17. This, the one long-styled plant of the same parentage as the last three plants, when freely and legitimately fertilised in the same manner as the last, yielded an average from ten capsules of 76.3 rather poor seeds, with a maximum of 88 and a minimum of 57. Hence this plant produced 82 per cent of the proper number of seeds. Twelve flowers enclosed in a net were artificially and legitimately fertilised with pollen from a legitimate short-styled plant; and nine capsules yielded an average of 82.5 seeds, with a maximum of 98 and a minimum of 51; so that its fertility was increased by the action of pollen from a legitimate plant, but still did not reach the normal standard.] CLASS 4. ILLEGITIMATE PLANTS RAISED FROM A MID-STYLED PARENT FERTILISED WITH POLLEN FROM OWN-FORM LONGEST STAMENS. After two trials, I succeeded in raising only four plants from this illegitimate union. These proved to be three mid-styled and one long-styled; but from so small a number we can hardly judge of the tendency in mid-styled plants when self-fertilised to reproduce the same form. These four plants never attained their full and normal height; the long-styled plant had several of its anthers contabescent. [PLANT 18. This mid-styled plant, when freely and legitimately fertilised during 1865 by illegitimate plants descended from self-fertilised long-, short-, and mid-styled plants, yielded an average from ten capsules of 102.6 seeds, with a maximum of 131 and a minimum of 63: hence this plant did not produce quite 80 per cent of the normal number of seeds. Twelve flowers were artificially and legitimately fertilised with pollen from a legitimate long-styled plant, and yielded from nine capsules an average of 116.1 seeds, which were finer than in the previous case, with a maximum of 135 and a minimum of 75; so that, as with Plant 17, pollen from a legitimate plant increased the fertility, but did not bring it up to the full standard. PLANT 19. This mid-styled plant, fertilised in the same manner and at the same period as the last, yielded an average from ten capsules of 73.4 seeds, with a maximum of 87 and a minimum of 64: hence this plant produced only 56 per cent of the full number of seeds. Thirteen flowers were artificially and legitimately fertilised with pollen from a legitimate long-styled plant, and yielded ten capsules with an average of 95.6 seeds; so that the application of pollen from a legitimate plant added, as in the two previous cases, to the fertility, but did not bring it up to the proper standard. PLANT 20. This long-styled plant, of the same parentage with the two last mid-styled plants, and freely fertilised in the same manner, yielded an average from ten capsules of 69.6 seeds, with a maximum of 83 and a minimum of 52: hence this plant produced 75 per cent of the full number of seeds.] CLASS 5. ILLEGITIMATE PLANTS RAISED FROM A SHORT-STYLED PARENT FERTILISED WITH POLLEN FROM THE MID-LENGTH STAMENS OF THE LONG-STYLED FORM. In the four previous classes, plants raised from the three forms fertilised with pollen from either the longer or shorter stamens of the same form, but generally not from the same plant, have been described. Six other illegitimate unions are possible, namely, between the three forms and the stamens in the other two forms which do not correspond in height with their pistils. But I succeeded in raising plants from only three of these six unions. From one of them, forming the present Class 5, twelve plants were raised; these consisted of eight short- styled, and four long-styled plants, with not one mid-styled. These twelve plants never attained quite their full and proper height, but by no means deserved to be called dwarfs. The anthers in some of the flowers were contabescent. One plant was remarkable from all the longer stamens in every flower and from many of the shorter ones having their anthers in this condition. The pollen of four other plants, in which none of the anthers were contabescent, was examined; in one a moderate number of grains were minute and shrivelled, but in the other three they appeared perfectly sound. With respect to the power of producing seed, five plants (Numbers 21 to 25) were observed: one yielded scarcely more than half the normal number; a second was slightly infertile; but the three others actually produced a larger average number of seeds, with a higher maximum, than the standard. In my concluding remarks I shall recur to this fact, which at first appears inexplicable. [PLANT 21. This short-styled plant, freely and legitimately fertilised during 1865 by illegitimate plants, descended from self-fertilised long-, mid- and short-styled parents, yielded an average from ten capsules of 43 seeds, with a maximum of 63 and a minimum of 26: hence this plant, which was the one with all its longer and many of its shorter stamens contabescent, produced only 52 per cent of the proper number of seeds. PLANT 22. This short-styled plant produced perfectly sound pollen, as viewed under the microscope. During 1866 it was freely and legitimately fertilised by other illegitimate plants belonging to the present and the following class, both of which include many highly fertile plants. Under these circumstances it yielded from eight capsules an average of 100.5 seeds, with a maximum of 123 and a minimum of 86; so that it produced 121 per cent of seeds in comparison with the normal standard. During 1864 it was allowed to be freely and legitimately fertilised by legitimate and illegitimate plants, and yielded an average, from eight capsules, of 104.2 seeds, with a maximum of 125 and a minimum of 90; consequently it exceeded the normal standard, producing 125 per cent of seeds. In this case, as in some previous cases, pollen from legitimate plants added in a small degree to the fertility of the plant; and the fertility would, perhaps, have been still greater had not the summer of 1864 been very hot and certainly unfavourable to some of the plants of Lythrum. PLANT 23. This short-styled plant produced perfectly sound pollen. During 1866 it was freely and legitimately fertilised by the other illegitimate plants specified under the last experiment, and eight capsules yielded an average of 113.5 seeds, with a maximum of 123 and a minimum of 93. Hence this plant exceeded the normal standard, producing no less than 136 per cent of seeds. PLANT 24. This long-styled plant produced pollen which seemed under the microscope sound; but some of the grains did not swell when placed in water. During 1864 it was legitimately fertilised by legitimate and illegitimate plants in the same manner as Plant 22, but yielded an average, from ten capsules, of only 55 seeds, with a maximum of 88 and a minimum of 24, thus attaining 59 per cent of the normal fertility. This low degree of fertility, I presume, was owing to the unfavourable season; for during 1866, when legitimately fertilised by illegitimate plants in the manner described under Number 22, it yielded an average, from eight capsules, of 82 seeds, with a maximum of 120 and a minimum of 67, thus producing 88 per cent of the normal number of seeds. PLANT 25. The pollen of this long-styled plant contained a moderate number of poor and shrivelled grains; and this is a surprising circumstance, as it yielded an extraordinary number of seeds. During 1866 it was freely and legitimately fertilised by illegitimate plants, as described under Number 22, and yielded an average, from eight capsules, of 122.5 seeds, with a maximum of 149 and a minimum of 84. Hence this plant exceeded the normal standard, producing no less than 131 per cent of seeds.] CLASS 6. ILLEGITIMATE PLANTS RAISED FROM MID-STYLED PARENTS FERTILISED WITH POLLEN FROM THE SHORTEST STAMENS OF THE LONG-STYLED FORM. I raised from this union twenty-five plants, which proved to be seventeen long- styled and eight mid-styled, but not one short-styled. None of these plants were in the least dwarfed. I examined, during the highly favourable season of 1866, the pollen of four plants: in one mid-styled plant, some of the anthers of the longest stamens were contabescent, but the pollen-grains in the other anthers were mostly sound, as they were in all the anthers of the shortest stamens; in two other mid-styled and in one long-styled plant many of the pollen-grains were small and shrivelled; and in the latter plant as many as a fifth or sixth part appeared to be in this state. I counted the seeds in five plants (Numbers 26 to 30), of which two were moderately sterile and three fully fertile. [PLANT 26. This mid-styled plant was freely and legitimately fertilised, during the rather unfavourable year 1864, by numerous surrounding legitimate and illegitimate plants. It yielded an average, from ten capsules, of 83.5 seeds, with a maximum of 110 and a minimum of 64, thus attaining 64 per cent of the normal fertility. During the highly favourable year 1866, it was freely and legitimately fertilised by illegitimate plants belonging to the present Class and to Class 5, and yielded an average, from eight capsules, of 86 seeds, with a maximum of 109 and a minimum of 61, and thus attained 66 per cent of the normal fertility. This was the plant with some of the anthers of the longest stamens contabescent as above mentioned. PLANT 27. This mid-styled plant, fertilised during 1864 in the same manner as the last, yielded an average, from ten capsules, of 99.4 seeds, with a maximum of 122 and a minimum of 53, thus attaining to 76 per cent of the normal fertility. If the season had been more favourable, its fertility would probably have been somewhat greater, but, judging from the last experiment, only in a slight degree. PLANT 28. This mid-styled plant, when legitimately fertilised during the favourable season of 1866, in the manner described under Number 26, yielded an average, from eight capsules, of 89 seeds, with a maximum of 119 and a minimum of 69, thus producing 68 per cent of the full number of seeds. In the pollen of both sets of anthers, nearly as many grains were small and shrivelled as sound. PLANT 29. This long-styled plant was legitimately fertilised during the unfavourable season of 1864, in the manner described under Number 26, and yielded an average, from ten capsules, of 84.6 seeds, with a maximum of 132 and a minimum of 47, thus attaining to 91 per cent of the normal fertility. During the highly favourable season of 1866, when fertilised in the manner described under Number 26, it yielded an average, from nine capsules (one poor capsule having been excluded), of 100 seeds, with a maximum of 121 and a minimum of 77. This plant thus exceeded the normal standard, and produced 107 per cent of seeds. In both sets of anthers there were a good many bad and shrivelled pollen-grains, but not so many as in the last-described plant. Plant 30. This long-styled plant was legitimately fertilised during 1866 in the manner described under Number 26, and yielded an average, from eight capsules, of 94 seeds, with a maximum of 106 and a minimum of 66; so that it exceeded the normal standard, yielding 101 per cent of seeds. Plant 31. Some flowers on this long-styled plant were artificially and legitimately fertilised by one of its brother illegitimate mid-styled plants; and five capsules yielded an average of 90.6 seeds, with a maximum of 97 and a minimum of 79. Hence, as far as can be judged from so few capsules, this plant attained, under these favourable circumstances, 98 per cent of the normal standard.] CLASS 7. ILLEGITIMATE PLANTS RAISED FROM MID-STYLED PARENTS FERTILISED WITH POLLEN FROM THE LONGEST STAMENS OF THE SHORT-STYLED FORM. It was shown in the last chapter that the union from which these illegitimate plants were raised is far more fertile than any other illegitimate union; for the mid-styled parent, when thus fertilised, yielded an average (all very poor capsules being excluded) of 102.8 seeds, with a maximum of 130; and the seedlings in the present class likewise have their fertility not at all lessened. Forty plants were raised; and these attained their full height and were covered with seed-capsules. Nor did I observe any contabescent anthers. It deserves, also, particular notice that these plants, differently from what occurred in any of the previous classes, consisted of all three forms, namely, eighteen short-styled, fourteen long-styled, and eight mid-styled plants. As these plants were so fertile, I counted the seeds only in the two following cases. [PLANT 32. This mid-styled plant was freely and legitimately fertilised during the unfavourable year of 1864, by numerous surrounding legitimate and illegitimate plants. Eight capsules yielded an average of 127.2 seeds, with a maximum of 144 and a minimum of 96; so that this plant attained 98 per cent of the normal standard. PLANT 33. This short-styled plant was fertilised in the same manner and at the same time with the last; and ten capsules yielded an average of 113.9, with a maximum of 137 and a minimum of 90. Hence this plant produced no less than 137 per cent of seeds in comparison with the normal standard.] CONCLUDING REMARKS ON THE ILLEGITIMATE OFFSPRING OF THE THREE FORMS OF Lythrum salicaria. From the three forms occurring in approximately equal numbers in a state of nature, and from the results of sowing seed naturally produced, there is reason to believe that each form, when legitimately fertilised, reproduces all three forms in about equal numbers. Now, we have seen (and the fact is a very singular one) that the fifty-six plants produced from the long-styled form, illegitimately fertilised with pollen from the same form (Class 1 and 2), were all long-styled. The short-styled form, when self-fertilised (Class 3), produced eight short-styled and one long-styled plant; and the mid-styled form, similarly treated (Class 4), produced three mid-styled and one long-styled offspring; so that these two forms, when illegitimately fertilised with pollen from the same form, evince a strong, but not exclusive, tendency to reproduce the parent-form. When the short-styled form was illegitimately fertilised by the long-styled form (Class 5), and again when the mid-styled was illegitimately fertilised by the long-styled (Class 6), in each case the two parent-forms alone were reproduced. As thirty-seven plants were raised from these two unions, we may, with much confidence, believe that it is the rule that plants thus derived usually consist of both parent-forms, but not of the third form. When, however, the mid-styled form was illegitimately fertilised by the longest stamens of the short-styled (Class 7), the same rule did not hold good; for the seedlings consisted of all three forms. The illegitimate union from which these latter seedlings were raised is, as previously stated, singularly fertile, and the seedlings themselves exhibited no signs of sterility and grew to their full height. From the consideration of these several facts, and from analogous ones to be given under Oxalis, it seems probable that in a state of nature the pistil of each form usually receives, through the agency of insects, pollen from the stamens of corresponding height from both the other forms. But the case last given shows that the application of two kinds of pollen is not indispensable for the production of all three forms. Hildebrand has suggested that the cause of all three forms being regularly and naturally reproduced, may be that some of the flowers are fertilised with one kind of pollen, and others on the same plant with the other kind of pollen. Finally, of the three forms, the long-styled evinces somewhat the strongest tendency to reappear amongst the offspring, whether both, or one, or neither of the parents are long-styled. [TABLE 5.30. Tabulated results of the fertility of the foregoing illegitimate plants, when legitimately fertilised, generally by illegitimate plants, as described under each experiment. Plants 11, 12 and 13 are excluded, as they were illegitimately fertilised. NORMAL STANDARD OF FERTILITY OF THE THREE FORMS, WHEN LEGITIMATELY AND NATURALLY FERTILISED. Column 1: Form. Column 2: Average number of seeds per capsule. Column 3: Maximum number in any one capsule. Column 4: Minimum number in any one capsule. Long-styled : 93 : 159 : No record was kept as all very poor capsules were rejected. Mid-styled : 130 : 151 : No record was kept as all very poor capsules were rejected. Short-styled : 83.5 : 112 : No record was kept as all very poor capsules were rejected.
 
TABLE 5.30. Continued.

CLASS 1 AND CLASS 2.--ILLEGITIMATE PLANTS RAISED FROM LONG-STYLED
PARENTS FERTILISED WITH POLLEN FROM OWN-FORM MID-LENGTH OR
SHORTEST STAMENS.

Column 1: Number (name) of plant.
Column 2: Form.
Column 3: Average number of seeds per capsule.
Column 4: Maximum number of seeds in any one capsule.
Column 5: Minimum number of seeds in any one capsule.
Column 6: Average number of seeds, expressed as the percentage
of the normal standard.

 1 : Long-styled :  0      :  0 :  0 : 0.
 2 : Long-styled :  4.5    :  ? :  0 : 5.
 3 : Long-styled :  4.5    :  ? :  0 : 5.
 4 : Long-styled :  4.5    :  ? :  0 : 5.
 5 : Long-styled :  0 or 1 :  2 :  0 : 0 or 1.
 6 : Long-styled :  0      :  0 :  0 : 0.
 7 : Long-styled : 36.1    : 47 : 22 : 39.
 8 : Long-styled : 41.1    : 73 : 11 : 44.
 9 : Long-styled : 57.1    : 86 : 23 : 61.
10 : Long-styled : 44.2    : 69 : 25 : 47.

CLASS 3. ILLEGITIMATE PLANTS RAISED FROM SHORT-STYLED PARENTS FERTILISED
WITH POLLEN FROM OWN-FORM SHORTEST STAMENS.

14 : Short-styled : 28.3 : 51 : 11 : 33.
15 : Short-styled : 32.6 : 49 : 20 : 38.
16 : Short-styled : 77.8 : 97 : 60 : 94.
17 : Long-styled  : 76.3 : 88 : 57 : 82.

CLASS 4. ILLEGITIMATE PLANTS RAISED FROM MID-STYLED PARENTS FERTILISED
WITH POLLEN FROM OWN-FORM LONGEST STAMENS.

18 : Mid-styled  : 102.6 : 131 : 63 : 80.
19 : Mid-styled  :  73.4 :  87 : 64 : 56.
20 : Long-styled :  69.6 :  83 : 52 : 75.

CLASS 5. ILLEGITIMATE PLANTS RAISED FROM SHORT-STYLED PARENTS FERTILISED
WITH POLLEN FROM THE MID-LENGTH STAMENS OF THE LONG-STYLED FORM.

21 : Short-styled :  43.0 :  63 : 26 :  52.
22 : Short-styled : 100.5 : 123 : 86 : 121.
23 : Short-styled : 113.5 : 123 : 93 : 136.
24 : Long-styled  :  82.0 : 120 : 67 :  88.
25 : Long-styled  : 122.5 : 149 : 84 : 131.

CLASS 6. ILLEGITIMATE PLANTS RAISED FROM MID-STYLED PARENTS FERTILISED
WITH POLLEN FROM THE SHORTEST STAMENS OF THE LONG-STYLED FORM.

26 : Mid-styled  :  86.0 : 109 : 61 :  66.
27 : Mid-styled  :  99.4 : 122 : 53 :  76.
28 : Mid-styled  :  89.0 : 119 : 69 :  68.
29 : Long-styled : 100.0 : 121 : 77 : 107.
30 : Long-styled :  94.0 : 106 : 66 : 101.
31 : Long-styled :  90.6 :  97 : 79 :  98.

CLASS 7. ILLEGITIMATE PLANTS RAISED FROM MID-STYLED PARENTS
FERTILISED WITH POLLEN FROM THE LONGEST STAMENS OF THE SHORT-STYLED FORM.

32 : Mid-styled   : 127.2 : 144 : 96 :  98.
33 : Short-styled : 113.9 : 137 : 90 : 137.
The lessened fertility of most of these illegitimate plants is in many respects a highly remarkable phenomenon. Thirty-three plants in the seven classes were subjected to various trials, and the seeds carefully counted. Some of them were artificially fertilised, but the far greater number were freely fertilised (and this is the better and natural plan) through the agency of insects, by other illegitimate plants. In the right hand, or percentage column, in Table 5.30, a wide difference in fertility between the plants in the first four and the last three classes may be perceived. In the first four classes the plants are descended from the three forms illegitimately fertilised with pollen taken from the same form, but only rarely from the same plant. It is necessary to observe this latter circumstance; for, as I have elsewhere shown, most plants, when fertilised with their own pollen, or that from the same plant, are in some degree sterile, and the seedlings raised from such unions are likewise in some degree sterile, dwarfed, and feeble. (5/3. 'The Effects of Cross and Self- fertilisation in the Vegetable Kingdom' 1876.) None of the nineteen illegitimate plants in the first four classes were completely fertile; one, however, was nearly so, yielding 96 per cent of the proper number of seeds. From this high degree of fertility we have many descending gradations, till we reach an absolute zero, when the plants, though bearing many flowers, did not produce, during successive years, a single seed or even seed-capsule. Some of the most sterile plants did not even yield a single seed when legitimately fertilised with pollen from legitimate plants. There is good reason to believe that the first seven plants in Class 1 and 2 were the offspring of a long-styled plant fertilised with pollen from its own-form shortest stamens, and these plants were the most sterile of all. The remaining plants in Class 1 and 2 were almost certainly the product of pollen from the mid-length stamens, and although very sterile, they were less so than the first set. None of the plants in the first four classes attained their full and proper stature; the first seven, which were the most sterile of all (as already stated), were by far the most dwarfed, several of them never reaching to half their proper height. These same plants did not flower at so early an age, or at so early a period in the season, as they ought to have done. The anthers in many of their flowers, and in the flowers of some other plants in the first six classes, were either contabescent or included numerous small and shrivelled pollen-grains. As the suspicion at one time occurred to me that the lessened fertility of the illegitimate plants might be due to the pollen alone having been affected, I may remark that this certainly was not the case; for several of them, when fertilised by sound pollen from legitimate plants, did not yield the full complement of seeds; hence it is certain that both the female and male reproductive organs were affected. In each of the seven classes, the plants, though descended from the same parents, sown at the same time and in the same soil, differed much in their average degree of fertility. Turning now to the fifth, sixth, and seventh classes, and looking to the right hand column of Table 5.30, we find nearly as many plants with a percentage of seeds above the normal standard as beneath it. As with most plants the number of seeds produced varies much, it might be thought that the present case was one merely of variability. But this view must be rejected, as far as the less fertile plants in these three classes are concerned: first, because none of the plants in Class 5 attained their proper height, which shows that they were in some manner affected; and, secondly, because many of the plants in Classes 5 and 6 produced anthers which were either contabescent or included small and shrivelled pollen-grains. And as in these cases the male organs were manifestly deteriorated, it is by far the most probable conclusion that the female organs were in some cases likewise affected, and that this was the cause of the reduced number of seeds. With respect to the six plants in these three classes which yielded a very high percentage of seeds, the thought naturally arises that the normal standard of fertility for the long-styled and short-styled forms (with which alone we are here concerned) may have been fixed too low, and that the six legitimate plants are merely fully fertile. The standard for the long-styled form was deduced by counting the seeds in twenty-three capsules, and for the short-styled form from twenty-five capsules. I do not pretend that this is a sufficient number of capsules for absolute accuracy; but my experience has led me to believe that a very fair result may thus be gained. As, however, the maximum number observed in the twenty-five capsules of the short-styled form was low, the standard in this case may possibly be not quite high enough. But it should be observed, in the case of the illegitimate plants, that in order to avoid over-estimating their infertility, ten very fine capsules were always selected; and the years 1865 and 1866, during which the plants in the three latter classes were experimented on, were highly favourable for seed-production. Now, if this plan of selecting very fine capsules during favourable seasons had been followed for obtaining the normal standards, instead of taking, during various seasons, the first capsules which came to hand, the standards would undoubtedly have been considerably higher; and thus the fact of the six foregoing plants appearing to yield an unnaturally high percentage of seeds may, perhaps, be explained. On this view, these plants are, in fact, merely fully fertile, and not fertile to an abnormal degree. Nevertheless, as characters of all kinds are liable to variation, especially with organisms unnaturally treated, and as in the four first and more sterile classes, the plants derived from the same parents and treated in the same manner, certainly did vary much in sterility, it is possible that certain plants in the latter and more fertile classes may have varied so as to have acquired an abnormal degree of fertility. But it should be noticed that, if my standards err in being too low, the sterility of all the many sterile plants in the several classes will have to be estimated by so much the higher. Finally, we see that the illegitimate plants in the four first classes are all more or less sterile, some being absolutely barren, with one alone almost completely fertile; in the three latter classes, some of the plants are moderately sterile, whilst others are fully fertile, or possibly fertile in excess. The last point which need here be noticed is that, as far as the means of comparison serve, some degree of relationship generally exists between the infertility of the illegitimate union of the several parent-forms and that of their illegitimate offspring. Thus the two illegitimate unions, from which the plants in Classes 6 and 7 were derived, yielded a fair amount of seed, and only a few of these plants are in any degree sterile. On the other hand, the illegitimate unions between plants of the same form always yield very few seeds, and their seedlings are very sterile. Long-styled parent-plants when fertilised with pollen from their own-form shortest stamens, appear to be rather more sterile than when fertilised with their own-form mid-length stamens; and the seedlings from the former union were much more sterile than those from the latter union. In opposition to this relationship, short-styled plants illegitimately fertilised with pollen from the mid-length stamens of the long- styled form (Class 5) are very sterile; whereas some of the offspring raised from this union were far from being highly sterile. It may be added that there is a tolerably close parallelism in all the classes between the degree of sterility of the plants and their dwarfed stature. As previously stated, an illegitimate plant fertilised with pollen from a legitimate plant has its fertility slightly increased. The importance of the several foregoing conclusions will be apparent at the close of this chapter, when the illegitimate unions between the forms of the same species and their illegitimate offspring, are compared with the hybrid unions of distinct species and their hybrid offspring. OXALIS. No one has compared the legitimate and illegitimate offspring of any trimorphic species in this genus. Hildebrand sowed illegitimately fertilised seeds of Oxalis Valdiviana, but they did not germinate (5/4. 'Botanische Zeitung' 1871 page 433 footnote.); and this fact, as he remarks, supports my view that an illegitimate union resembles a hybrid one between two distinct species, for the seeds in this latter case are often incapable of germination. [The following observations relate to the nature of the forms which appear among the legitimate seedlings of Oxalis Valdiviana. Hildebrand raised, as described in the paper just referred to, 211 seedlings from all six legitimate unions, and the three forms appeared among the offspring from each union. For instance, long-styled plants were legitimately fertilised with pollen from the longest stamens of the mid-styled form, and the seedlings consisted of 15 long-styled, 18 mid-styled, and 6 short-styled. We here see that a few short-styled plants were produced, though neither parent was short-styled; and so it was with the other legitimate unions. Out of the above 211 seedlings, 173 belonged to the same two forms as their parents, and only 38 belonged to the third form distinct from either parent. In the case of O. Regnelli, the result, as observed by Hildebrand, was nearly the same, but more striking: all the offspring from four of the legitimate unions consisted of the two parent-forms, whilst amongst the seedlings from the other two legitimate unions the third form appeared. Thus, of the 43 seedlings from the six legitimate unions, 35 belonged to the same two forms as their parents, and only 8 to the third form. Fritz Muller also raised in Brazil seedlings from long-styled plants of O. Regnelli legitimately fertilised with pollen from the longest stamens of the mid-styled form, and all these belonged to the two parent-forms. (5/5. 'Jenaische Zeitschrift' etc. Band 6 1871 page 75.) Lastly, seedlings were raised by me from long-styled plants of O. speciosa legitimately fertilised by the short-styled form, and from the latter reciprocally fertilised by the long-styled; and these consisted of 33 long-styled and 26 short-styled plants, with not one mid-styled form. There can, therefore, be no doubt that the legitimate offspring from any two forms of Oxalis tend to belong to the same two forms as their parents; but that a few seedlings belonging to the third form occasionally make their appearance; and this latter fact, as Hildebrand remarks, may be attributed to atavism, as some of their progenitors will almost certainly have belonged to the third form. When, however, any one form of Oxalis is fertilised illegitimately with pollen from the same form, the seedlings appear to belong invariably to this form. Thus Hildebrand states that long-styled plants of O. rosea growing by themselves have been propagated in Germany year after year by seed, and have always produced long-styled plants. (5/6. 'Ueber den Trimorphismus in der Gattung Oxalis: Monatsberichte der Akad. der Wissen. zu Berlin' 21 June 1866 page 373 and 'Botanische Zeitung' 1871 page 435.) Again, 17 seedlings were raised from mid- styled plants of O. hedysaroides growing by themselves, and these were all mid- styled. So that the forms of Oxalis, when illegitimately fertilised with their own pollen, behave like the long-styled form of Lythrum salicaria, which when thus fertilised always produced with me long-styled offspring.] PRIMULA. Primula Sinensis. I raised during February 1862, from some long-styled plants illegitimately fertilised with pollen from the same form, twenty-seven seedlings. These were all long-styled. They proved fully fertile or even fertile in excess; for ten flowers, fertilised with pollen from other plants of the same lot, yielded nine capsules, containing on an average 39.75 seeds, with a maximum in one capsule of 66 seeds. Four other flowers legitimately crossed with pollen from a legitimate plant, and four flowers on the latter crossed with pollen from the illegitimate seedlings, yielded seven capsules with an average of 53 seeds, with a maximum of 72. I must here state that I have found some difficulty in estimating the normal standard of fertility for the several unions of this species, as the results differ much during successive years, and the seeds vary so greatly in size that it is hard to decide which ought to be considered good. In order to avoid over- estimating the infertility of the several illegitimate unions, I have taken the normal standard as low as possible. From the foregoing twenty-seven illegitimate plants, fertilised with their own- form pollen, twenty-five seedling grandchildren were raised; and these were all long-styled; so that from the two illegitimate generations fifty-two plants were raised, and all without exception proved long-styled. These grandchildren grew vigorously, and soon exceeded in height two other lots of illegitimate seedlings of different parentage and one lot of equal-styled seedlings presently to be described. Hence I expected that they would have turned out highly ornamental plants; but when they flowered, they seemed, as my gardener remarked, to have gone back to the wild state; for the petals were pale-coloured, narrow, sometimes not touching each other, flat, generally deeply notched in the middle, but not flexuous on the margin, and with the yellow eye or centre conspicuous. Altogether these flowers were strikingly different from those of their progenitors; and this I think, can only be accounted for on the principle of reversion. Most of the anthers on one plant were contabescent. Seventeen flowers on the grandchildren were illegitimately fertilised with pollen taken from other seedlings of the same lot, and produced fourteen capsules, containing on an average 29.2 seeds; but they ought to have contained about 35 seeds. Fifteen flowers legitimately fertilised with pollen from an illegitimate short-styled plant (belonging to the lot next to be described) produced fourteen capsules, containing an average of 46 seeds; they ought to have contained at least 50 seeds. Hence these grandchildren of illegitimate descent appear to have lost, though only in a very slight degree, their full fertility. We will now turn to the short-styled form: from a plant of this kind, fertilised with its own-form pollen, I raised, during February 1862, eight seedlings, seven of which were short-styled and one long-styled. They grew slowly, and never attained to the full stature of ordinary plants; some of them flowered precociously, and others late in the season. Four flowers on these short-styled seedlings and four on the one long-styled seedling were illegitimately fertilised with their own-form pollen and produced only three capsules, containing on an average 23.6 seeds, with a maximum of 29; but we cannot judge of their fertility from so few capsules; and I have greater doubts about the normal standard for this union than about any other; but I believe that rather above 25 seeds would be a fair estimate. Eight flowers on these same short- styled plants, and the one long-styled illegitimate plant were reciprocally and legitimately crossed; they produced five capsules, which contained an average of 28.6 seeds, with a maximum of 36. A reciprocal cross between legitimate plants of the two forms would have yielded an average of at least 57 seeds, with a possible maximum of 74 seeds; so that these illegitimate plants were sterile when legitimately crossed. I succeeded in raising from the above seven short-styled illegitimate plants, fertilised with their own-form pollen, only six plants--grandchildren of the first union. These, like their parents, were of low stature, and had so poor a constitution that four died before flowering. With ordinary plants it has been a rare event with me to have more than a single plant die out of a large lot. The two grandchildren which lived and flowered were short-styled; and twelve of their flowers were fertilised with their own-form pollen and produced twelve capsules containing an average of 28.2 seeds; so that these two plants, though belonging to so weakly a set, were rather more fertile than their parents, and perhaps not in any degree sterile. Four flowers on the same two grandchildren were legitimately fertilised by a long-styled illegitimate plant, and produced four capsules, containing only 32.2 seeds instead of about 64 seeds, which is the normal average for legitimate short-styled plants legitimately crossed. By looking back, it will be seen that I raised at first from a short-styled plant fertilised with its own-form pollen one long-styled and seven short-styled illegitimate seedlings. These seedlings were legitimately intercrossed, and from their seed fifteen plants were raised, grandchildren of the first illegitimate union, and to my surprise all proved short-styled. Twelve short-styled flowers borne by these grandchildren were illegitimately fertilised with pollen taken from other plants of the same lot, and produced eight capsules which contained an average of 21.8 seeds, with a maximum of 35. These figures are rather below the normal standard for such a union. Six flowers were also legitimately fertilised with pollen from an illegitimate long-styled plant and produced only three capsules, containing on an average 23.6 seeds, with a maximum of 35. Such a union in the case of a legitimate plant ought to have yielded an average of 64 seeds, with a possible maximum of 73 seeds. SUMMARY ON THE TRANSMISSION OF FORM, CONSTITUTION, AND FERTILITY OF THE ILLEGITIMATE OFFSPRING OF Primula Sinensis. In regard to the long-styled plants, their illegitimate offspring, of which fifty-two were raised in the course of two generations, were all long-styled. (5/7. Dr. Hildebrand, who first called attention to this subject 'Botanische Zeitung' 1864 page 5, raised from a similar illegitimate union seventeen plants, of which fourteen were long-styled and three short-styled. From a short-styled plant illegitimately fertilised with its own pollen he raised fourteen plants, of which eleven were short-styled and three long-styled.) These plants grew vigorously; but the flowers in one instance were small, appearing as if they had reverted to the wild state. In the first illegitimate generation they were perfectly fertile, and in the second their fertility was only very slightly impaired. With respect to the short-styled plants, twenty-four out of twenty- five of their illegitimate offspring were short-styled. They were dwarfed in stature, and one lot of grandchildren had so poor a constitution that four out of six plants perished before flowering. The two survivors, when illegitimately fertilised with their own-form pollen, were rather less fertile than they ought to have been; but their loss of fertility was clearly shown in a special and unexpected manner, namely, when legitimately fertilised by other illegitimate plants: thus altogether eighteen flowers were fertilised in this manner, and yielded twelve capsules, which included on an average only 28.5 seeds, with a maximum of 45. Now a legitimate short-styled plant would have yielded, when legitimately fertilised, an average of 64 seeds, with a possible maximum of 74. This particular kind of infertility will perhaps be best appreciated by a simile: we may assume that with mankind six children would be born on an average from an ordinary marriage; but that only three would be born from an incestuous marriage. According to the analogy of Primula Sinensis, the children of such incestuous marriages, if they continued to marry incestuously, would have their sterility only slightly increased; but their fertility would not be restored by a proper marriage; for if two children, both of incestuous origin, but in no degree related to each other, were to marry, the marriage would of course be strictly legitimate, nevertheless they would not give birth to more than half the full and proper number of children. [EQUAL-STYLED VARIETY OF Primula Sinensis. As any variation in the structure of the reproductive organs, combined with changed function, is a rare event, the following cases are worth giving in detail. My attention was first called to the subject by observing, in 1862, a long-styled plant, descended from a self-fertilised long-styled parent, which had some of its flowers in an anomalous state, namely, with the stamens placed low down in the corolla as in the ordinary long-styled form, but with the pistils so short that the stigmas stood on a level with the anthers. These stigmas were nearly as globular and as smooth as in the short-styled form, instead of being elongated and rough as in the long-styled form. Here, then, we have combined in the same flower, the short stamens of the long-styled form with a pistil closely resembling that of the short-styled form. But the structure varied much even on the same umbel: for in two flowers the pistil was intermediate in length between that of the long and that of the short-styled form, with the stigma elongated as in the former, and smooth as in the latter; and in three other flowers the structure was in all respects like that of the long-styled form. These modifications appeared to me so remarkable that I fertilised eight of the flowers with their own pollen, and obtained five capsules, which contained on an average 43 seeds; and this number shows that the flowers had become abnormally fertile in comparison with those of ordinary long- styled plants when self-fertilised. I was thus led to examine the plants in several small collections, and the result showed that the equal-styled variety was not rare. TABLE 5.31. Primula Sinensis. Preponderance of long-styled over the short-styled form. Column 1: Name of owner or place. Column 2: Long-styled form. Column 3: Short-styled form. Column 4: equal-styled variety. Mr. Horwood : 0 : 0 : 17. Mr. Duck : 20 : 0 : 9. Baston : 30 : 18 : 15. Chichester : 12 : 9 : 2. Holwood : 42 : 12 : 0. High Elms : 16 : 0 : 0. Westerham : 1 : 5 : 0. My own plants from purchased seeds : 13 : 7 : 0. Total : 134 : 51 : 43. In a state of nature the long and short-styled forms would no doubt occur in nearly equal numbers, as I infer from the analogy of the other heterostyled species of Primula, and from having raised the two forms of the present species in exactly the same number from flowers which had been LEGITIMATELY crossed. The preponderance in Table 5.31 of the long-styled form over the short-styled (in the proportion of 134 to 51) results from gardeners generally collecting seed from self-fertilised flowers; and the long-styled flowers produce spontaneously much more seed (as shown in the first chapter) than the short-styled, owing to the anthers of the long-styled form being placed low down in the corolla, so that, when the flowers fall off, the anthers are dragged over the stigma; and we now also know that long-styled plants, when self-fertilised, very generally reproduce long-styled offspring. From the consideration of this table, it occurred to me in the year 1862, that almost all the plants of the Chinese primrose cultivated in England would sooner or later become long-styled or equal-styled; and now, at the close of 1876, I have had five small collections of plants examined, and almost all consisted of long-styled, with some more or less well-characterised equal-styled plants, but with not one short-styled. With respect to the equal-styled plants in the table, Mr. Horwood raised from purchased seeds four plants, which he remembered were certainly not long-styled, but either short or equal-styled, probably the latter. These four plants were kept separate and allowed to fertilise themselves; from their seed the seventeen plants in the table were raised, all of which proved equal-styled. The stamens stood low down in the corolla as in the long-styled form; and the stigmas, which were globular and smooth, were either completely surrounded by the anthers, or stood close above them. My son William made drawings for me, by the aid of the camera, of the pollen of one of the above equal-styled plants; and, in accordance with the position of the stamens, the grains resembled in their small size those of the long-styled form. He also examined pollen from two equal- styled plants at Southampton; and in both of them the grains differed extremely in size in the same anthers, a large number being small and shrivelled, whilst many were fully as large as those of the short-styled form and rather more globular. It is probable that the large size of these grains was due, not to their having assumed the character of the short-styled form, but to monstrosity; for Max Wichura has observed pollen-grains of monstrous size in certain hybrids. The vast number of the small shrivelled grains in the above two cases explains the fact that, though equal-styled plants are generally fertile in a high degree, yet some of them yield few seeds. I may add that my son compared, in 1875, the grains from two white-flowered plants, in both of which the pistil projected above the anthers, but neither were properly long-styled or equal- styled; and in the one in which the stigma projected most, the grains were in diameter to those in the other plant, in which the stigma projected less, as 100 to 88; whereas the difference between the grains from perfectly characterised long-styled and short-styled plants is as 100 to 57. So that these two plants were in an intermediate condition. To return to the 17 plants in the first line of Table 5.31: from the relative position of their stigmas and anthers, they could hardly fail to fertilise themselves; and accordingly four of them spontaneously yielded no less than 180 capsules; of these Mr. Horwood selected eight fine capsules for sowing; and they included on an average 54.8 seeds, with a maximum of 72. He gave me thirty other capsules, taken by hazard, of which twenty-seven contained good seeds, averaging 35.5, with a maximum of 70; but if six poor capsules, each with less than 13 seeds, be excluded, the average rises to 42.5. These are higher numbers than could be expected from either well- characterised form if self-fertilised; and this high degree of fertility accords with the view that the male organs belonged to one form, and the female organs partially to the other form; so that a self-union in the case of the equal- styled variety is in fact a legitimate union. The seed saved from the above seventeen self-fertilised equal-styled plants produced sixteen plants, which all proved equal-styled, and resembled their parents in all the above-specified respects. The stamens, however, in one plant were seated higher up the tube of the corolla than in the true long-styled form; in another plant almost all the anthers were contabescent. These sixteen plants were the grandchildren of the four original plants, which it is believed were equal-styled; so that this abnormal condition was faithfully transmitted, probably through three, and certainly through two generations. The fertility of one of these grandchildren was carefully observed: six flowers were fertilised with pollen from the same flower, and produced six capsules, containing on an average 68 seeds, with a maximum of 82, and a minimum of 40. Thirteen capsules spontaneously self-fertilised yielded an average of 53.2 seeds, with the astonishing maximum in one of 97 seeds. In no legitimate union has so high an average as 68 seeds been observed by me, or nearly so high a maximum as 82 and 97. These plants, therefore, not only have lost their proper heterostyled structure and peculiar functional powers, but have acquired an abnormal grade of fertility--unless, indeed, their high fertility may be accounted for by the stigmas receiving pollen from the circumjacent anthers at exactly the most favourable period. With respect to Mr. Duck's lot in Table 5.31, seed was saved from a single plant, of which the form was not observed, and this produced nine equal-styled and twenty long-styled plants. The equal-styled resembled in all respects those previously described; and eight of their capsules spontaneously self-fertilised contained on an average 44.4 seeds, with a maximum of 61 and a minimum of 23. In regard to the twenty long-styled plants, the pistil in some of the flowers did not project quite so high as in ordinary long-styled flowers; and the stigmas, though properly elongated, were smooth; so that we have here a slight approach in structure to the pistil of the short-styled form. Some of these long-styled plants also approached the equal-styled in function; for one of them produced no less than fifteen spontaneously self-fertilised capsules, and of these eight contained, on an average, 31.7 seeds, with a maximum of 61. This average would be rather low for a long-styled plant artificially fertilised with its own pollen, but is high for one spontaneously self-fertilised. For instance, thirty- four capsules produced by the illegitimate grandchildren of a long-styled plant, spontaneously self-fertilised, contained on an average only 9.1 seeds, with a maximum of 46. Some seeds indiscriminately saved from the foregoing twenty-nine equal-styled and long-styled plants produced sixteen seedlings, grandchildren of the original plant belonging to Mr. Duck; and these consisted of fourteen equal- styled and two long-styled plants; and I mention this fact as an additional instance of the transmission of the equal-styled variety. The third lot in Table 5.31, namely the Baston plants, are the last which need be mentioned. The long and short-styled plants, and the fifteen equal-styled plants, were descended from two distinct stocks. The latter were derived from a single plant, which the gardener is positive was not long-styled; hence, probably, it was equal-styled. In all these fifteen plants the anthers, occupying the same position as in the long-styled form, closely surrounded the stigma, which in one instance alone was slightly elongated. Notwithstanding this position of the stigma, the flowers, as the gardener assured me, did not yield many seeds; and this difference from the foregoing cases may perhaps have been caused by the pollen being bad, as in some of the Southampton equal-styled plants.] CONCLUSIONS WITH RESPECT TO THE EQUAL-STYLED VARIETY OF P. Sinensis. That this is a variation, and not a third or distinct form, as in the trimorphic genera Lythrum and Oxalis, is clear; for we have seen its first appearance in one out of a lot of illegitimate long-styled plants; and in the case of Mr. Duck's seedlings, long-styled plants, only slightly deviating from the normal state, as well as equal-styled plants were produced from the same self- fertilised parent. The position of the stamens in their proper place low down in the tube of the corolla, together with the small size of the pollen-grains, show, firstly, that the equal-styled variety is a modification of the long- styled form, and, secondly, that the pistil is the part which has varied most, as indeed was obvious in many of the plants. This variation is of frequent occurrence, and is strongly inherited when it has once appeared. It would, however, have possessed little interest if it had consisted of a mere change of structure; but this is accompanied by modified fertility. Its occurrence apparently stands in close relation with the illegitimate birth of the parent plant; but to this whole subject I shall hereafter recur. [Primula auricula. Although I made no experiments on the illegitimate offspring of this species, I refer to it for two reasons:--First, because I have observed two equal-styled plants in which the pistil resembled in all respects that of the long-styled form, whilst the stamens had become elongated as in the short-styled form, so that the stigma was almost surrounded by the anthers. The pollen-grains, however, of the elongated stamens resembled in their small size those of the shorter stamens proper to the long-styled form. Hence these plants have become equal-styled by the increased length of the stamens, instead of, as with P. Sinensis, by the diminished length of the pistil. Mr. J. Scott observed five other plants in the same state, and he shows that one of them, when self- fertilised, yielded more seed than an ordinary long- or short-styled form would have done when similarly fertilised, but that it was far inferior in fertility to either form when legitimately crossed. (5/8. 'Journal of the Proceedings of the Linnean Society' 8 1864 page 91.) Hence it appears that the male and female organs of this equal-styled variety have been modified in some special manner, not only in structure but in functional powers. This, moreover, is shown by the singular fact that both the long-styled and short-styled plants, fertilised with pollen from the equal-styled variety, yield a lower average of seed than when these two forms are fertilised with their own pollen. The second point which deserves notice is that florists always throw away the long-styled plants, and save seed exclusively from the short-styled form. Nevertheless, as Mr. Scott was informed by a man who raises this species extensively in Scotland, about one-fourth of the seedlings appear long-styled; so that the short-styled form of the Auricula, when fertilised by its own pollen, does not reproduce the same form in so large a proportion as in the case of P. Sinensis. We may further infer that the short-styled form is not rendered quite sterile by a long course of fertilisation with pollen of the same form: but as there would always be some liability to an occasional cross with the other form, we cannot tell how long self-fertilisation has been continued. Primula farinosa. Mr. Scott says that it is not at all uncommon to find equal-styled plants of this heterostyled species. (5/9. 'Journal of the Proceedings of the Linnean Society' 8 1864 page 115.) Judging from the size of the pollen-grains, these plants owe their structure, as in the case of P. auricula, to the abnormal elongation of the stamens of the long-styled form. In accordance with this view, they yield less seed when crossed with the long-styled form than with the short- styled. But they differ in an anomalous manner from the equal-styled plants of P. auricula in being extremely sterile with their own pollen. Primula elatior. It was shown in the first chapter, on the authority of Herr Breitenbach, that equal-styled flowers are occasionally found on this species whilst growing in a state of nature; and this is the only instance of such an occurrence known to me, with the exception of some wild plants of the Oxlip--a hybrid between P. veris and vulgaris--which were equal-styled. Herr Breitenbach's case is remarkable in another way; for equal-styled flowers were found in two instances on plants which bore both long-styled and short-styled flowers. In every other instance these two forms and the equal-styled variety have been produced by distinct plants.] Primula vulgaris, BRIT. FL. VAR. acaulis OF LINN. AND P. acaulis OF JACQ. VAR. RUBRA. Mr. Scott states that this variety, which grew in the Botanic Garden in Edinburgh, was quite sterile when fertilised with pollen from the common primrose, as well as from a white variety of the same species, but that some of the plants, when artificially fertilised with their own pollen, yielded a moderate supply of seed. (5/10. 'Journal of the Proceedings of the Linnean Society' 8 1864 page 98.) He was so kind as to send me some of these self- fertilised seeds, from which I raised the plants immediately to be described. I may premise that the results of my experiments on the seedlings, made on a large scale, do not accord with those by Mr. Scott on the parent-plant. First, in regard to the transmission of form and colour. The parent-plant was long-styled, and of a rich purple colour. From the self-fertilised seed 23 plants were raised; of these 18 were purple of different shades, with two of them a little streaked and freckled with yellow, thus showing a tendency to reversion; and 5 were yellow, but generally with a brighter orange centre than in the wild flower. All the plants were profuse flowerers. All were long-styled; but the pistil varied a good deal in length even on the same plant, being rather shorter, or considerably longer, than in the normal long-styled form; and the stigmas likewise varied in shape. It is, therefore, probable that an equal- styled variety of the primrose might be found on careful search; and I have received two accounts of plants apparently in this condition. The stamens always occupied their proper position low down in the corolla; and the pollen-grains were of the small size proper to the long-styled form, but were mingled with many minute and shrivelled grains. The yellow-flowered and the purple-flowered plants of this first generation were fertilised under a net with their own pollen, and the seed separately sown. From the former, 22 plants were raised, and all were yellow and long-styled. From the latter or the purple-flowered plants, 24 long-styled plants were raised, of which 17 were purple and 7 yellow. In this last case we have an instance of reversion in colour, without the possibility of any cross, to the grandparents or more distant progenitors of the plants in question. Altogether 23 plants in the first generation and 46 in the second generation were raised; and the whole of these 69 illegitimate plants were long-styled! Eight purple-flowered and two yellow-flowered plants of the first illegitimate generation were fertilised in various ways with their own pollen and with that of the common primrose; and the seeds were separately counted, but as I could detect no difference in fertility between the purple and yellow varieties, the results are run together in Table 5.32. TABLE 5.32. Primula vulgaris. Column 1: Nature of plant experimented on, and kind of union. Column 2: Number of flowers fertilised. Column 3: Number of capsules produced. Column 4: Average Number of seeds per capsule. Column 5: Maximum Number of seeds in any one capsule. Column 6: Minimum Number of seeds in any one capsule. Purple- and yellow-flowered illegitimate long-styled plants, ILLEGITIMATELY fertilised with pollen from the same plant : 72 : 11 : 11.5 : 26 : 5. Purple- and yellow-flowered illegitimate long-styled plants, ILLEGITIMATELY fertilised with pollen from the common long-styled primrose : 72 : 39 : 31.4 : 62 : 3. Or, if the ten poorest capsules, including less than 15 seeds, be rejected, we get: 72 : 29 : 40.6 : 62 : 18. Purple- and yellow-flowered illegitimate long-styled plants, LEGITIMATELY fertilised with pollen from the common short-styled primrose : 26 : 18 : 36.4 : 60 : 9. Or, if the two poorest capsules, including less than 15 seeds, be rejected, we get: 26 : 16 : 41.2 : 60 : 15. The long-styled form of the common primrose ILLEGITIMATELY fertilised with pollen from the long-styled illegitimate purple- and yellow-flowered plants: 20 : 14 : 15.4 : 46 : 1. Or, if the three poorest capsules be rejected, we get: 20 : 11 : 18.9 : 46 : 8. The short-styled form of the common primrose LEGITIMATELY fertilised with pollen from the long-styled illegitimate purple- and yellow-flowered plants: 10 : 6 : 30.5 : 61 : 6. If we compare the figures in this table with those given in the first chapter, showing the normal fertility of the common primrose, we shall see that the illegitimate purple- and yellow-flowered varieties are very sterile. For instance, 72 flowers were fertilised with their own pollen and produced only 11 good capsules; but by the standard they ought to have produced 48 capsules; and each of these ought to have contained on an average 52.2 seeds, instead of only 11.5 seeds. When these plants were illegitimately and legitimately fertilised with pollen from the common primrose, the average numbers were increased, but were far from attaining the normal standards. So it was when both forms of the common primrose were fertilised with pollen from these illegitimate plants; and this shows that their male as well as their female organs were in a deteriorated condition. The sterility of these plants was shown in another way, namely, by their not producing any capsules when the access of all insects (except such minute ones as Thrips) was prevented; for under these circumstances the common long-styled primrose produces a considerable number of capsules. There can, therefore, be no doubt that the fertility of these plants was greatly impaired. The loss is not correlated with the colour of the flower; and it was to ascertain this point that I made so many experiments. As the parent-plant growing in Edinburgh was found by Mr. Scott to be in a high degree sterile, it may have transmitted a similar tendency to its offspring, independently of their illegitimate birth. I am, however, inclined to attribute some weight to the illegitimacy of their descent, both from the analogy of other cases, and more especially from the fact that when the plants were LEGITIMATELY fertilised with pollen of the common primrose they yielded an average, as may be seen in the table, of only 5 more seeds than when ILLEGITIMATELY fertilised with the same pollen. Now we know that it is eminently characteristic of the illegitimate offspring of Primula Sinensis that they yield but few more seeds when legitimately fertilised than when fertilised with their own-form pollen. Primula veris, Brit. Fl. Var. officinalis of Linn., P. officinalis OF Jacq. Seeds from the short-styled form of the cowslip fertilised with pollen from the same form germinate so badly that I raised from three successive sowings only fourteen plants, which consisted of nine short-styled and five long-styled plants. Hence the short-styled form of the cowslip, when self-fertilised, does not transmit the same form nearly so truly as does that of P. Sinensis. From the long-styled form, always fertilised with its own-form pollen, I raised in the first generation three long-styled plants,--from their seed 53 long-styled grandchildren,--from their seed 4 long-styled great-grandchildren,--from their seed 20 long-styled great-great-grandchildren,--and lastly, from their seed 8 long-styled and 2 short-styled great-great-great-grandchildren. In this last generation short-styled plants appeared for the first time in the course of the six generations,--the parent long-styled plant which was fertilised with pollen from another plant of the same form being counted as the first generation. Their appearance may be attributed to atavism. From two other long-styled plants, fertilised with their own-form pollen, 72 plants were raised, which consisted of 68 long-styled and 4 short-styled. So that altogether 162 plants were raised from illegitimately fertilised long-styled cowslips, and these consisted of 156 long-styled and 6 short-styled plants. We will now turn to the fertility and powers of growth possessed by the illegitimate plants. From a short-styled plant, fertilised with its own-form pollen, one short-styled and two long-styled plants, and from a long-styled plant similarly fertilised three long-styled plants were at first raised. The fertility of these six illegitimate plants was carefully observed; but I must premise that I cannot give any satisfactory standard of comparison as far as the number of the seeds is concerned; for though I counted the seeds of many legitimate plants fertilised legitimately and illegitimately, the number varied so greatly during successive seasons that no one standard will serve well for illegitimate unions made during different seasons. Moreover the seeds in the same capsule frequently differ so much in size that it is scarcely possible to decide which ought to be counted as good seed. There remains as the best standard of comparison the proportional number of fertilised flowers which produce capsules containing any seed. First, for the one illegitimate short-styled plant. In the course of three seasons 27 flowers were illegitimately fertilised with pollen from the same plant, and they yielded only a single capsule, which, however, contained a rather large number of seeds for a union of this nature, namely, 23. As a standard of comparison I may state that during the same three seasons 44 flowers borne by legitimate short-styled plants were self-fertilised, and yielded 26 capsules; so that the fact of the 27 flowers on the illegitimate plant having produced only one capsule proves how sterile it was. To show that the conditions of life were favourable, I will add that numerous plants of this and other species of Primula all produced an abundance of capsules whilst growing close by in the same soil with the present and following plants. The sterility of the above illegitimate short-styled plant depended on both the male and female organs being in a deteriorated condition. This was manifestly the case with the pollen; for many of the anthers were shrivelled or contabescent. Nevertheless some of the anthers contained pollen, with which I succeeded in fertilising some flowers on the illegitimate long-styled plants immediately to be described. Four flowers on this same short-styled plant were likewise LEGITIMATELY fertilised with pollen from one of the following long-styled plants; but only one capsule was produced, containing 26 seeds; and this is a very low number for a legitimate union. With respect to the five illegitimate long-styled plants of the first generation, derived from the above self-fertilised short-styled and long-styled parents, their fertility was observed during the same three years. These five plants, when self-fertilised, differed considerably from one another in their degree of fertility, as was the case with the illegitimate long-styled plants of Lythrum salicaria; and their fertility varied much according to the season. I may premise, as a standard of comparison, that during the same years 56 flowers on legitimate long-styled plants of the same age and grown in the same soil, were fertilised with their own pollen, and yielded 27 capsules; that is, 48 per cent. On one of the five illegitimate long-styled plants 36 flowers were self- fertilised in the course of the three years, but they did not produce a single capsule. Many of the anthers on this plant were contabescent; but some seemed to contain sound pollen. Nor were the female organs quite impotent; for I obtained from a LEGITIMATE cross one capsule with good seed. On a second illegitimate long-styled plant 44 flowers were fertilised during the same years with their own pollen, but they produced only a single capsule. The third and fourth plants were in a very slight degree more productive. The fifth and last plant was decidedly more fertile; for 42 self-fertilised flowers yielded 11 capsules. Altogether, in the course of the three years, no less than 160 flowers on these five illegitimate long-styled plants were fertilised with their own pollen, but they yielded only 22 capsules. According to the standard above given, they ought to have yielded 80 capsules. These 22 capsules contained on an average 15.1 seeds. I believe, subject to the doubts before specified, that with legitimate plants the average number from a union of this nature would have been above 20 seeds. Twenty-four flowers on these same five illegitimate long-styled plants were legitimately fertilised with pollen from the above-described illegitimate short-styled plant, and produced only 9 capsules, which is an extremely small number for a legitimate union. These 9 capsules, however, contained an average of 38 apparently good seeds, which is as large a number as legitimate plants sometimes yield. But this high average was almost certainly false; and I mention the case for the sake of showing the difficulty of arriving at a fair result; for this average mainly depended on two capsules containing the extraordinary numbers of 75 and 56 seeds; these seeds, however, though I felt bound to count them, were so poor that, judging from trials made in other cases, I do not suppose that one would have germinated; and therefore they ought not to have been included. Lastly, 20 flowers were legitimately fertilised with pollen from a legitimate plant, and this increased their fertility; for they produced 10 capsules. Yet this is but a very small proportion for a legitimate union. There can, therefore, be no doubt that these five long-styled plants and the one short-styled plant of the first illegitimate generation were extremely sterile. Their sterility was shown, as in the case of hybrids, in another way, namely, by their flowering profusely, and especially by the long endurance of the flowers. For instance, I fertilised many flowers on these plants, and fifteen days afterwards (namely on March 22nd) I fertilised numerous long-styled and short- styled flowers on common cowslips growing close by. These latter flowers, on April 8th, were withered, whilst most of the illegitimate flowers remained quite fresh for several days subsequently; so that some of these illegitimate plants, after being fertilised, remained in full bloom for above a month. We will now turn to the fertility of the 53 illegitimate long-styled grandchildren, descended from the long-styled plant which was first fertilised with its own pollen. The pollen in two of these plants included a multitude of small and shrivelled grains. Nevertheless they were not very sterile; for 25 flowers, fertilised with their own pollen, produced 15 capsules, containing an average of 16.3 seeds. As already stated, the probable average with legitimate plants for a union of this nature is rather above 20 seeds. These plants were remarkably healthy and vigorous, as long as they were kept under highly favourable conditions in pots in the greenhouse; and such treatment greatly increases the fertility of the cowslip. When these same plants were planted during the next year (which, however, was an unfavourable one), out of doors in good soil, 20 self-fertilised flowers produced only 5 capsules, containing extremely few and wretched seeds. Four long-styled great-grandchildren were raised from the self-fertilised grandchildren, and were kept under the same highly favourable conditions in the greenhouse; 10 of their flowers were fertilised with own-form pollen and yielded the large proportion of 6 capsules, containing on an average 18.7 seeds. From these seeds 20 long-styled great-great-grandchildren were raised, which were likewise kept in the greenhouse. Thirty of their flowers were fertilised with their own pollen and yielded 17 capsules, containing on an average no less than 32, mostly fine seeds. It appears, therefore, that the fertility of these plants of the fourth illegitimate generation, as long as they were kept under highly favourable conditions, had not decreased, but had rather increased. The result, however, was widely different when they were planted out of doors in good soil, where other cowslips grew vigorously and were completely fertile; for these illegitimate plants now became much dwarfed in stature and extremely sterile, notwithstanding that they were exposed to the visits of insects, and must have been legitimately fertilised by the surrounding legitimate plants. A whole row of these plants of the fourth illegitimate generation, thus freely exposed and legitimately fertilised, produced only 3 capsules, containing on an average only 17 seeds. During the ensuing winter almost all these plants died, and the few survivors were miserably unhealthy, whilst the surrounding legitimate plants were not in the least injured. The seeds from the great-great-grandchildren were sown, and 8 long-styled and 2 short-styled plants of the fifth illegitimate generation raised. These whilst still in the greenhouse produced smaller leaves and shorter flower-stalks than some legitimate plants with which they grew in competition; but it should be observed that the latter were the product of a cross with a fresh stock,--a circumstance which by itself would have added much to their vigour. (5/11. For full details of this experiment, see my 'Effects of Cross and Self- fertilisation' 1876 page 220.) When these illegitimate plants were transferred to fairly good soil out of doors, they became during the two following years much more dwarfed in stature and produced very few flower-stems; and although they must have been legitimately fertilised by insects, they yielded capsules, compared with those produced by the surrounding legitimate plants, in the ratio only of 5 to 100! It is therefore certain that illegitimate fertilisation, continued during successive generations, affects the powers of growth and fertility of P. veris to an extraordinary degree; more especially when the plants are exposed to ordinary conditions of life, instead of being protected in a greenhouse. [EQUAL-STYLED RED VARIETY OF Primula veris. Mr. Scott has described a plant of this kind growing in the Botanic Garden of Edinburgh. (5/12. 'Proceedings of the Linnean Society' volume 8 1864 page 105.) He states that it was highly self-fertile, although insects were excluded; and he explains this fact by showing, first, that the anthers and stigma are in close apposition, and that the stamens in length, position and size of their pollen-grains resemble those of the short-styled form, whilst the pistil resembles that of the long-styled form both in length and in the structure of the stigma. Hence the self-union of this variety is, in fact, a legitimate union, and consequently is highly fertile. Mr. Scott further states that this variety yielded very few seeds when fertilised by either the long- or short- styled common cowslip, and, again, that both forms of the latter, when fertilised by the equal-styled variety, likewise produced very few seeds. But his experiments with the cowslip were few, and my results do not confirm his in any uniform manner. I raised twenty plants from self-fertilised seed sent me by Mr. Scott; and they all produced red flowers, varying slightly in tint. Of these, two were strictly long-styled both in structure and in function; for their reproductive powers were tested by crosses with both forms of the common cowslip. Six plants were equal-styled; but on the same plant the pistil varied a good deal in length during different seasons. This was likewise the case, according to Mr. Scott, with the parent-plant. Lastly, twelve plants were in appearance short-styled; but they varied much more in the length of their pistils than ordinary short- styled cowslips, and they differed widely from the latter in their powers of reproduction. Their pistils had become short-styled in structure, whilst remaining long-styled in function. Short-styled cowslips, when insects are excluded, are extremely barren: for instance, on one occasion six fine plants produced only about 50 seeds (that is, less than the product of two good capsules), and on another occasion not a single capsule. Now, when the above twelve apparently short-styled seedlings were similarly treated, nearly all produced a great abundance of capsules, containing numerous seeds, which germinated remarkably well. Moreover three of these plants, which during the first year were furnished with quite short pistils, on the following year produced pistils of extraordinary length. The greater number, therefore, of these short-styled plants could not be distinguished in function from the equal- styled variety. The anthers in the six equal-styled and in the apparently twelve short-styled plants were seated high up in the corolla, as in the true short- styled cowslip; and the pollen-grains resembled those of the same form in their large size, but were mingled with a few shrivelled grains. In function this pollen was identical with that of the short-styled cowslip; for ten long-styled flowers of the common cowslip, legitimately fertilised with pollen from a true equal-styled variety, produced six capsules, containing on an average 34.4 seeds; whilst seven capsules on a short-styled cowslip illegitimately fertilised with pollen from the equal-styled variety, yielded an average of only 14.5 seeds. As the equal-styled plants differ from one another in their powers of reproduction, and as this is an important subject, I will give a few details with respect to five of them. First, an equal-styled plant, protected from insects (as was done in all the following cases, with one stated exception), spontaneously produced numerous capsules, five of which gave an average of 44.8 seeds, with a maximum in one capsule of 57. But six capsules, the product of fertilisation with pollen from a short-styled cowslip (and this is a legitimate union), gave an average of 28.5 seeds, with a maximum of 49; and this is a much lower average than might have been expected. Secondly, nine capsules from another equal-styled plant, which had not been protected from insects, but probably was self-fertilised, gave an average of 45.2 seeds, with a maximum of 58. Thirdly, another plant which had a very short pistil in 1865, produced spontaneously many capsules, six of which contained an average of 33.9 seeds, with a maximum of 38. In 1866 this same plant had a pistil of wonderful length; for it projected quite above the anthers, and the stigma resembled that of the long-styled form. In this condition it produced spontaneously a vast number of fine capsules, six of which contained almost exactly the same average number as before, namely 34.3, with a maximum of 38. Four flowers on this plant, legitimately fertilised with pollen from a short-styled cowslip, yielded capsules with an average of 30.2 seeds. Fourthly another short-styled plant spontaneously produced in 1865 an abundance of capsules, ten of which contained an average of 35.6 seeds, with a maximum of 54. In 1866 this same plant had become in all respects long-styled, and ten capsules gave almost exactly the same average as before, namely 35.1 seeds, with a maximum of 47. Eight flowers on this plant, legitimately fertilised with pollen from a short-styled cowslip, produced six capsules, with the high average of 53 seeds, and the high maximum of 67. Eight flowers were also fertilised with pollen from a long-styled cowslip (this being an illegitimate union), and produced seven capsules, containing an average of 24.4 seeds, with a maximum of 32. The fifth and last plant remained in the same condition during both years: it had a pistil rather longer than that of the true short-styled form, with the stigma smooth, as it ought to be in this form, but abnormal in shape, like a much-elongated inverted cone. It produced spontaneously many capsules, five of which, in 1865, gave an average of only 15.6 seeds; and in 1866 ten capsules still gave an average only a little higher, namely of 22.1, with a maximum of 30. Sixteen flowers were fertilised with pollen from a long-styled cowslip, and produced 12 capsules, with an average of 24.9 seeds, and a maximum of 42. Eight flowers were fertilised with pollen from a short-styled cowslip, but yielded only two capsules, containing 18 and 23 seeds. Hence this plant, in function and partially in structure, was in an almost exactly intermediate state between the long-styled and short-styled form, but inclining towards the short-styled; and this accounts for the low average of seeds which it produced when spontaneously self-fertilised. The foregoing five plants thus differ much from one another in the nature of their fertility. In two individuals a great difference in the length of the pistil during two succeeding years made no difference in the number of seeds produced. As all five plants possessed the male organs of the short-styled form in a perfect state, and the female organs of the long-styled form in a more or less complete state, they spontaneously produced a surprising number of capsules, which generally contained a large average of remarkably fine seeds. With ordinary cowslips LEGITIMATELY FERTILISED, I once obtained from plants cultivated in the greenhouse the high average, from seven capsules, of 58.7 seeds, with a maximum in one capsule of 87 seeds; but from plants grown out of doors I never obtained a higher average than 41 seeds. Now two of the equal- styled plants, grown out of doors and spontaneously SELF-FERTILISED, gave averages of 44 and 45 seeds; but this high fertility may perhaps be in part attributed to the stigma receiving pollen from the surrounding anthers at exactly the right period. Two of these plants, fertilised with pollen from a short-styled cowslip (and this in fact is a legitimate union), gave a lower average than when self-fertilised. On the other hand, another plant, when similarly fertilised by a cowslip, yielded the unusually high average of 53 seeds, with a maximum of 67. Lastly, as we have just seen, one of these plants was in an almost exactly intermediate condition in its female organs between the long- and short-styled forms, and consequently, when self-fertilised, yielded a low average of seed. If we add together all the experiments which I made on the equal-styled plants, 41 spontaneously self-fertilised capsules (insects having been excluded) gave an average of 34 seeds, which is exactly the same number as the parent-plant yielded in Edinburgh. Thirty-four flowers, fertilised with pollen from the short-styled cowslip (and this is an analogous union), produced 17 capsules, containing an average of 33.8 seeds. It is a rather singular circumstance, for which I cannot account, that 20 flowers, artificially fertilised on one occasion with pollen from the same plants yielded only ten capsules, containing the low average of 26.7 seeds. As bearing on inheritance, it may be added that 72 seedlings were raised from one of the red-flowered, strictly equal-styled, self-fertilised plants descended from the similarly characterised Edinburgh plant. These 72 plants were therefore grandchildren of the Edinburgh plant, and they all bore, as in the first generation, red flowers, with the exception of one plant, which reverted in colour to the common cowslip. In regard to structure, nine plants were truly long-styled and had their stamens seated low down in the corolla in the proper position; the remaining 63 plants were equal-styled, though the stigma in about a dozen of them stood a little below the anthers. We thus see that the anomalous combination in the same flower, of the male and female sexual organs which properly exist in the two distinct forms, was inherited with much force. Thirty- six seedlings were also raised from long and short-styled common cowslips, crossed with pollen from the equal-styled variety. Of these plants one alone was equal-styled, 20 were short-styled, but with the pistil in three of them rather too long, and the remaining 15 were long-styled. In this case we have an illustration of the difference between simple inheritance and prepotency of transmission; for the equal-styled variety, when self-fertilised, transmits its character, as we have just seen, with much force, but when crossed with the common cowslip cannot withstand the greater power of transmission of the latter. PULMONARIA. I have little to say on this genus. I obtained seeds of P. officinalis from a garden where the long-styled form alone grew, and raised 11 seedlings, which were all long-styled. These plants were named for me by Dr. Hooker. They differed, as has been shown, from the plants belonging to this species which in Germany were experimented on by Hildebrand (5/13. 'Botanische Zeitung' 1865 page 13.); for he found that the long-styled form was absolutely sterile with its own pollen, whilst my long-styled seedlings and the parent-plants yielded a fair supply of seed when self-fertilised. Plants of the long-styled form of Pulmonaria angustifolia were, like Hildebrand's plants, absolutely sterile with their own pollen, so that I could never procure a single seed. On the other hand, the short-styled plants of this species, differently from those of P. officinalis, were fertile with their own pollen in a quite remarkable degree for a heterostyled plant. From seeds carefully self-fertilised I raised 18 plants, of which 13 proved short-styled and 5 long-styled. Polygonum fagopyrum. From flowers on long-styled plants fertilised illegitimately with pollen from the same plant, 49 seedlings were raised, and these consisted of 45 long-styled and 4 short-styled. From flowers on short-styled plants illegitimately fertilised with pollen from the same plant 33 seedlings were raised, and these consisted of 20 short-styled and 13 long-styled. So that the usual rule of illegitimately fertilised long-styled plants tending much more strongly than short-styled plants to reproduce their own form here holds good. The illegitimate plants derived from both forms flowered later than the legitimate, and were to the latter in height as 69 to 100. But as these illegitimate plants were descended from parents fertilised with their own pollen, whilst the legitimate plants were descended from parents crossed with pollen from a distinct individual, it is impossible to know how much of their difference in height and period of flowering, is due to the illegitimate birth of the one set, and how much to the other set being the product of a cross between distinct plants.] CONCLUDING REMARKS ON THE ILLEGITIMATE OFFSPRING OF HETEROSTYLED TRIMORPHIC AND DIMORPHIC PLANTS. It is remarkable how closely and in how many points illegitimate unions between the two or three forms of the same heterostyled species, together with their illegitimate offspring, resemble hybrid unions between distinct species together with their hybrid offspring. In both cases we meet with every degree of sterility, from very slightly lessened fertility to absolute barrenness, when not even a single seed-capsule is produced. In both cases the facility of effecting the first union is much influenced by the conditions to which the plants are exposed. (5/14. This has been remarked by many experimentalists in effecting crosses between distinct species; and in regard to illegitimate unions I have given in the first chapter a striking illustration in the case of Primula veris.) Both with hybrids and illegitimate plants the innate degree of sterility is highly variable in plants raised from the same mother-plant. In both cases the male organs are more plainly affected than the female; and we often find contabescent anthers enclosing shrivelled and utterly powerless pollen-grains. The more sterile hybrids, as Max Wichura has well shown, are sometimes much dwarfed in stature, and have so weak a constitution that they are liable to premature death (5/15. 'Die Bastardbefruchtung im Pflanzenreich' 1865.); and we have seen exactly parallel cases with the illegitimate seedlings of Lythrum and Primula. Many hybrids are the most persistent and profuse flowerers, as are some illegitimate plants. When a hybrid is crossed by either pure parent-form, it is notoriously much more fertile than when crossed inter se or by another hybrid; so when an illegitimate plant is fertilised by a legitimate plant, it is more fertile than when fertilised inter se or by another illegitimate plant. When two species are crossed and they produce numerous seeds, we expect as a general rule that their hybrid offspring will be moderately fertile; but if the parent species produce extremely few seeds, we expect that the hybrids will be very sterile. But there are marked exceptions, as shown by Gartner, to these rules. So it is with illegitimate unions and illegitimate offspring. Thus the mid- styled form of Lythrum salicaria, when illegitimately fertilised with pollen from the longest stamens of the short-styled form, produced an unusual number of seeds; and their illegitimate offspring were not at all, or hardly at all, sterile. On the other hand, the illegitimate offspring from the long-styled form, fertilised with pollen from the shortest stamens of the same form, yielded few seeds, and the illegitimate offspring thus produced were very sterile; but they were more sterile than might have been expected relatively to the difficulty of effecting the union of the parent sexual elements. No point is more remarkable in regard to the crossing of species than their unequal reciprocity. Thus species A will fertilise B with the greatest ease; but B will not fertilise A after hundreds of trials. We have exactly the same case with illegitimate unions; for the mid-styled Lythrum salicaria was easily fertilised by pollen from the longest stamens of the short-styled form, and yielded many seeds; but the latter form did not yield a single seed when fertilised by the longest stamens of the mid-styled form. Another important point is prepotency. Gartner has shown that when a species is fertilised with pollen from another species, if it be afterwards fertilised with its own pollen, or with that of the same species, this is so prepotent over the foreign pollen that the effect of the latter, though placed on the stigma some time previously, is entirely destroyed. Exactly the same thing occurs with the two forms of a heterostyled species. Thus several long-styled flowers of Primula veris were fertilised illegitimately with pollen from another plant of the same form, and twenty-four hours afterwards legitimately with pollen from a short- styled dark-red polyanthus which is a variety of P. veris; and the result was that every one of the thirty seedlings thus raised bore flowers more or less red, showing plainly how prepotent the legitimate pollen from a short-styled plant was over the illegitimate pollen from a long-styled plant. In all the several foregoing points the parallelism is wonderfully close between the effects of illegitimate and hybrid fertilisation. It is hardly an exaggeration to assert that seedlings from an illegitimately fertilised heterostyled plant are hybrids formed within the limits of one and the same species. This conclusion is important, for we thus learn that the difficulty in sexually uniting two organic forms and the sterility of their offspring, afford no sure criterion of so-called specific distinctness. If any one were to cross two varieties of the same form of Lythrum or Primula for the sake of ascertaining whether they were specifically distinct, and he found that they could be united only with some difficulty, that their offspring were extremely sterile, and that the parents and their offspring resembled in a whole series of relations crossed species and their hybrid offspring, he might maintain that his varieties had been proved to be good and true species; but he would be completely deceived. In the second place, as the forms of the same trimorphic or dimorphic heterostyled species are obviously identical in general structure, with the exception of the reproductive organs, and as they are identical in general constitution (for they live under precisely the same conditions), the sterility of their illegitimate unions and that of their illegitimate offspring, must depend exclusively on the nature of the sexual elements and on their incompatibility for uniting in a particular manner. And as we have just seen that distinct species when crossed resemble in a whole series of relations the forms of the same species when illegitimately united, we are led to conclude that the sterility of the former must likewise depend exclusively on the incompatible nature of their sexual elements, and not on any general difference in constitution or structure. We are, indeed, led to this same conclusion by the impossibility of detecting any differences sufficient to account for certain species crossing with the greatest ease, whilst other closely allied species cannot be crossed, or can be crossed only with extreme difficulty. We are led to this conclusion still more forcibly by considering the great difference which often exists in the facility of crossing reciprocally the same two species; for it is manifest in this case that the result must depend on the nature of the sexual elements, the male element of the one species acting freely on the female element of the other, but not so in a reversed direction. And now we see that this same conclusion is independently and strongly fortified by the consideration of the illegitimate unions of trimorphic and dimorphic heterostyled plants. In so complex and obscure a subject as hybridism it is no slight gain to arrive at a definite conclusion, namely, that we must look exclusively to functional differences in the sexual elements, as the cause of the sterility of species when first crossed and of their hybrid offspring. It was this consideration which led me to make the many observations recorded in this chapter, and which in my opinion make them worthy of publication. _

Read next: Chapter 6. Concluding Remarks On Heterostyled Plants

Read previous: Chapter 4. Heterostyled Trimorphic Plants

Table of content of Different Forms of Flowers on Plants of the Same Species


GO TO TOP OF SCREEN

Post your review
Your review will be placed after the table of content of this book