Home
Fictions/Novels
Short Stories
Poems
Essays
Plays
Nonfictions
 
Authors
All Titles
 






In Association with Amazon.com

Home > Authors Index > Charles Morris > Man And His Ancestor: A Study In Evolution > This page

Man And His Ancestor: A Study In Evolution, a non-fiction book by Charles Morris

Chapter 5. The Freedom Of The Arms

< Previous
Table of content
Next >
________________________________________________
_ CHAPTER V. THE FREEDOM OF THE ARMS

Man's ancestor is by no means the only form of ape that has made the earth's surface its place of residence. The baboon is one example of a number of forms that dwell habitually upon the ground, though they have not lost their agility in climbing. But these species have returned to the quadruped habit, to which the equal length of their limbs adapts them. All the anthropoid apes dwell to some extent upon the ground, but these can neither be called quadrupeds nor bipeds, their usual mode of progression being an awkward compromise between the two. The same may be said of one of the lemurs, the propithecus, the only member of its tribe that attempts to move in the erect attitude. It does not walk, however, but progresses by a series of jumps, its arms being held erect, as if for balancing.

Of the apes, though many can stand upright, the gibbon is the only one that attempts to walk in this position. This is a true walk, though not a very graceful one. The animal maintains a fairly upright posture, but walks with a waddling motion, its body rocking from side to side. Its soles are placed flat on the ground, with the great toes spread outward. Its arms either hang loosely by its side, are crossed over its head, or are held aloft, swaying like balancing poles and ready to seize any overhead support. Its walk is quickly changed to a different motion if any occasion for haste arises. At once its long arms are dropped to the ground, the knuckles closed, and it progresses by a swinging or leaping motion, the body remaining nearly erect, but being swung between the arms.

None of the other anthropoid apes ever walk erect, though they assume at times the upright posture. But though they use all their limbs as walking organs, they show no tendency to revert to the habit of the quadrupeds. Their motion is like that of the gibbon when in haste, a series of jumps or swings between the supporting arms. The shortness of their arms, however, prevents them from standing erect, like the gibbon, in doing this; and they bend forward to a degree depending on the length of their arms, the chimpanzee the most, the orang the least.

As a rule, the flat sole of the foot is set on the ground, with the toes extended, as in man, but the toes are sometimes doubled under in walking. The orang rarely touches the ground with the sole or the closed toes, but walks on the outer edge of the foot, the feet being bent inward as if clasping the rounded sides of a bough. The other species have a tendency in the same direction, the legs being bowed and the gait rolling. In using the hands in walking, the closed knuckles are usually placed on the ground, though occasionally the open palm is employed. The whole movement of these animals is strikingly awkward, and goes to indicate that there can be no satisfactory compromise between life in the tree and on the ground.

The significant fact in these attempts to walk is that none of the anthropoid apes show any inclination to revert to the quadruped habit. Their attitude is in all cases an approach toward the erect one, which posture is attained by the gibbon. The arms are used not as walking but as swinging organs. Evidently their mode of life in the trees has overcome all tendency toward the quadruped motion in these apes and developed a tendency toward the biped. But none of them have gained the muscular development of the leg known as the calf, nor an adjustment of the joints to the erect attitude, since none but the gibbon walks erect, and it does so only at occasional intervals.

The conclusion to be derived from all this is that the man-ape was in its early days much more truly a biped than are any of the species named. Like them, it had no tendency to revert to the quadruped habit. The shortness of its arms was unsuited to this, while rendering it impossible for the animal to progress in the semi-erect, swinging fashion of the other anthropoid apes. As a result of its bodily formation, it may have begun to walk erect at a very remote date, with a consequent straightening of the joints and muscular development of the legs. When this condition was fully attained, it was practically a man in physical conformation, though mentally still an ape, and with a long development of the brain to pass through before it could reach the human level of mind.

The far-reaching conclusions here reached are all based on one important fact, the shortness of man's arms as compared with the disproportionate length of arm in the anthropoid apes. This, for the reasons given, rendered the adaptation of the man-ape to life in the trees inferior to that of the long-armed apes; while, as has just been said, it unfitted it to walk on the ground either as a quadruped or in the jumping method of its fellow anthropoids. In short, the biped attitude was much the best suited to its organization and the one it was most likely to assume. This once adopted as its habitual posture, efficiency in walking would be gained by practice.

When once this animal became a ground walker, its facility of motion in the trees was in a measure lost. When the feet became accustomed to the flat surface of the ground, they became less capable of grasping the rounded surface of the bough. Fitness to the one situation entailed loss of fitness to the other. The feet of the apes can clasp the bough firmly, by curving around its opposite sloping sides, and to this these animals doubtless owe their bowed legs and their disposition to walk on the outer edge of the foot. This disposition the man-ape lost as its foot fitted itself to the surface of the ground. It was probably retained in a measure by the young, after it had been lost by the mature form, and is still manifested in the position of the foot in the human embryo.

These considerations bring us to an important question: Why did the man-ape gain a length of arm not the best suited to its arboreal habitat? Why, in fact, do changes in physical structure ever take place? How does an animal succeed in passing from one mode of life to another, when during the transition period it is imperfectly adapted to either, and therefore at a seeming disadvantage in the struggle for existence? The study of animal development has given rise to certain difficult problems of this character, some of which have been solved by showing that the supposed disadvantage did not arise, or that it was balanced by some equal advantage. In this way a considerable gap in life conditions has perhaps occasionally been crossed. Small gaps have doubtless been frequently passed over in the same manner.

In the case of the anthropoid apes, we perceive a considerable variation in the length of the arms, from the very long arms of the gibbon to the comparatively short ones of the chimpanzee. These differences are probably the result of some difference in their life habits, and accord with the possibility of a still shorter arm in the man-ape. There is, however, some reason to believe, as we shall show later on, that the arm of this animal was longer and the leg shorter than in man himself, their comparative length perhaps not differing greatly from that of the chimpanzee. Aside from all other considerations, the use of the legs as the sole organs of locomotion could not well fail to produce this result, the legs growing longer and stronger in consequence of the increased duty laid upon them, and the arms growing shorter and weaker through their release from duty in locomotion. The case does not differ in character from those of the dinosauria and the kangaroos, in both of which instances a release of the arms from duty in walking was followed by a considerable decrease in length and strength, while the legs grew proportionally stronger.

If any disadvantage attended the shortening of the arms of the man-ape, to the extent that this may have taken place in the tree, it was probably correlated with some advantage. In the various instances of short-armed animals cited this appears to have been the case, and it was probably so in man's ancestral form. While the hands continued useful in grasping and enabling the animal to maintain its place on the boughs, they may have been gradually diverted to some other service, with the result that the animal found the tree less desirable than before as a place of residence and sought the ground instead. This would be particularly the case if the new duty was one best exercised upon the ground.

Shall we offer a suggestion as to this new use? Such changes are usually the result of some change of habit in the animal, frequently one that has to do with its food. Change of diet or of the mode of obtaining food is the most potent influencing cause of change of habit in animals, and the one that first calls for consideration.

The apes are frugivorous animals, though not exclusively so. Carnivorous tendencies are displayed by many of them. They rob birds' nests of their eggs and young, they capture and devour snakes and other small animals. In zooelogical gardens monkeys are often observed to catch and eat mice. It is evident that many of them might readily become carnivorous to a large extent under suitable conditions. The large apes are usually frugivorous, but some of them eat animal food. This is the case with both the chimpanzee and the gorilla. The latter, while living usually on fruit and often making havoc in the sugar-cane plantations and rice-fields of the natives, also eats birds and their eggs, small mammals and reptiles, and is said to devour large animals when found dead, though it does not attempt to kill them for food. The young gorilla which was kept in captivity at Berlin became quite omnivorous in its diet.

With all this readiness to eat animal food, none of the existing apes are carnivorous to any large extent, but the fact of this inclination makes it not improbable that some of the apes of the past may have been much more so. It is quite within the limits of probability, for instance, that the man-ape at an early date became omnivorous in its diet. Its change in structure may well have been the result of a decided change in diet, such as that from fruit to flesh food. Such a radical change as that from vegetable to animal food would certainly demand a more active employment of the arms as agents in capture. Fruits and nuts wait to be pulled; animals must be caught before they can be eaten. The former is an easy matter to an arboreal animal; the latter might prove a difficult one, especially if large animals were to be captured.

In short, the pursuit and capture of any of the larger animals for prey could not fail to modify to a great degree the use of the arms. Their employment in locomotion would interfere seriously with their utility in this direction. To succeed in capturing nimble prey by an animal with the ape form of hands a considerable freedom of the arms would be necessary, and the feet would have to be mainly, if not wholly, depended upon for motion. The ape has not the sharp claws of the carnivora with which to seize and hold its prey. It must have been obliged to use its palms for this purpose, and this it could not well have done unless they were free in their action.

It is conceivable, indeed, that the man-ape may have run down its prey, or sprung upon it from covert, and seized it with the hands, but there is good reason to believe that this was not its mode of capture. The organization of the ape tribe gives it a characteristic action which is not to be found in any other group of the vast animal kingdom, that of handling and throwing missiles. In this it necessarily stands alone, since no other animal has a grasping palm. The power is one of prime importance, for without it we cannot perceive how man could ever have emerged from the general animal kingdom. The use of missiles is by no means uncommon with the monkeys. We cannot safely accept the story that American monkeys will throw cocoanuts from tree-tops at those who hurl stones at them from below, from the fact that the cocoanut seems too heavy and too firmly fixed to its support for the strength of those small species, but it is not uncommon for them to throw lighter objects. Yet in doing this they usually seem to have no idea of aim, but toss the missile aimlessly into the air. Of the large apes, the orang will break off branches and fling them at its tormentors, or will throw the thick husks of the durian fruit, but with similar lack of aim. The most skilful in this exercise are some species of baboons, which can hurl branches, stones, or hard clods with much dexterity.

It is of interest to find existing apes availing themselves of their grasping power in this manner, since it leads us irresistibly to the conclusion that the man-ape may have done the same thing. The species which use missiles fail to take aim for two reasons, one that they employ them only occasionally, often in imitation of human action, the other that their arms are ill suited to this motion from their constant employment in another duty. In the case of the man-ape we may justly look for a more effective result, since if the arms became relieved from duty in locomotion they were free to gain facility of action in other directions.

If in addition to this the man-ape began to use missiles with a definite purpose in view, that of striking down animal prey, so that the use of such weapons became habitual instead of occasional, it would soon gain some power of aim and a growing strength and skill in the throwing motion. It is quite probable, also, that an early use of weapons was in the form of clubs, which were retained in the grasp to strike down the prey when overtaken. In this case, we may imagine our primitive biped running swiftly after its prey, club in hand, striking at it when within reach; or, if it should prove too swift, hurling the club or a stone through the air with the hope of bringing it down in this manner. Such a flinging action, if now and then successful, would be likely soon to become habitual; while the arm would grow accustomed to this new motion, and attain skill in taking aim. We may reasonably infer, also, that the club would be used for defence as well as for offence, in case the man-ape were in its turn pursued by larger animals. Instead of fleeing to the nearest tree, it might now stand its ground and beat off its enemy.

All must admit the probability, in a large tribe of animals with grasping power in their hands, and in the habit of using missiles occasionally, of one or more species coming to use them habitually. All the anthropoid apes are certainly intelligent enough to do this, if it should prove advantageous to them. Its principal advantage, however, would seem to be to a species that became largely carnivorous and needed to capture running or flying prey.

The habit of using implements is one of supreme importance in animal evolution. To it we owe man as he exists to-day. While animals confined themselves to their natural weapons of teeth and claws, their development must have remained a very slow one and been confined within narrow limits. When they once began to add to their natural powers those of surrounding nature, by the use of artificial weapons, the first step in a new and illimitable range of evolution was taken. From that day to this, man has been occupied in unfolding this method, and has advanced enormously beyond his primal state. A crude and simple use of weapons gave him, in time, supremacy over all the lower animals. An advanced use of weapons and tools has given him, in a measure, supremacy over nature herself, and raised him to a stage almost infinitely beyond that of the animal which trusts solely to teeth and claws.

So far as we know, only one of the innumerable species of animals attained this development; unless, indeed, the various races of men had more than one ape ancestor. For the appearance of man there became necessary, first, the development of an order of animals with power of grasp in their hands; and, second, the development of one or more biped species, with hands freed from duty as walking organs and capable of use in other directions. A third necessity was very probably the exchange of the frugivorous for the carnivorous habit, which would act as a predisposing agency in inducing the animal to desert the tree for the ground, and to employ weapons in the chase. The final result of all this would be an erect, walking, and running animal, with arms and hands quite free from their old duty, except during an occasional return to the tree, and with the necessary straightening of joints and development of supporting muscles.

What has been advanced above is, no doubt, largely a series of assumptions and conjectures, few of which are sustained by known facts. But as the matter stands, no other method of dealing with it can be adopted, since the facts in the case have in great part vanished. What we know positively is that man exists, and that in physical structure he is very closely related to the anthropoid apes. What we have excellent reason to feel assured of is that man has descended from the lower animals, and in all probability from an ape-like ancestor. We know that one or more species of anthropoid apes have become extinct, and can reasonably conjecture that one ancient species became modified into the form of man. We know that human remains have been found that, to some small extent, fill the gap between man and the ape. Correlative evidence exists in the variations in length of limb in the existing anthropoids, their efforts to walk upright, their varied degree of dependence upon the arms for locomotion, and the occasional use of missiles by these and lower forms. To these may be added the carnivorous tastes shown by many members of the ape family, with the indication that more decided carnivorous habits might readily be assumed.

Taking the stand that such a partly carnivorous anthropoid ape, biped in structure, appeared and made the ground its usual place of residence, we find ourselves on the direct trail of man. Long ago as this may have been, and far and difficult as was the journey to be made, the way was thenceforth straight and well-defined. Such an animal, living largely on animal food, and using weapons superior to its natural ones in the capture of prey, was essentially a man, however low may still have been its level of intelligence. Its feet were firmly fixed upon the upward track, and only time and stress of circumstance were needed to carry it upward to the high level of civilized man.

We may, indeed, go further than this. We are in a measure justified in saying what this man-ape was like, this creature which had left its early home in the trees and began to walk upright upon the earth, pursuing the larger animals and capturing them for food. It was probably much smaller than existing man, little if any more than four feet in height and not more than half the weight of man. Its body was covered, though not profusely, with hair, the hair of the head being woolly or frizzly in texture, and the face provided with a beard. The complexion was not jet black, like the typical negro, but of a dull brown hue, the hair being somewhat similar in color. The arms were lank and rather long, the back much curved, the chest flat and narrow, the abdomen protruding, the legs rather short and bowed, the walk a waddling motion, somewhat like that of the gibbon. It had small, deep-set eyes, greatly protruding mouth with gaping lips, huge ears, and in general a very ape-like aspect. Our warrant for this description of man's ancestor must be left for a later portion of our work. We shall only say here that it is based on known fact, not on fancy. _

Read next: Chapter 6. The Development Of Intelligence

Read previous: Chapter 4. From Quadruped To Biped

Table of content of Man And His Ancestor: A Study In Evolution


GO TO TOP OF SCREEN

Post your review
Your review will be placed after the table of content of this book