Home
Fictions/Novels
Short Stories
Poems
Essays
Plays
Nonfictions
 
Authors
All Titles
 






In Association with Amazon.com

Home > Authors Index > Browse all available works of Thomas Garnett > Text of On The Cultivation Of Wheat On The Same Land In Successive Years

An essay by Thomas Garnett

On The Cultivation Of Wheat On The Same Land In Successive Years

________________________________________________
Title:     On The Cultivation Of Wheat On The Same Land In Successive Years
Author: Thomas Garnett [More Titles by Garnett]

_To The Editor of the "Manchester Guardian."_

CLITHEROE, October 5th, 1843.

SIR,--I PROMISED to send you some details of my attempt to grow wheat on the same soil year after year. These I now forward, and hope they may prove interesting. I was led into these experiments by reading Liebig's book on the "Chemistry of Agriculture;" for, assuming his theory to be true, it appeared to me to be quite possible to grow wheat on the same land year after year; as, according to that theory, the carbon, oxygen, and hydrogen, which constitute the great bulk of all cereal crops (both grain and straw), are supplied in abundance from the soil and atmosphere (or perhaps, to speak more correctly, from the latter), and we have only to supply those inorganic substances, which, however numerous, form but a small part of the whole weight of the crop. With the view of testing this theory, and hoping that I might be able to find out what were the elements which built up and cemented the carbon, oxygen, and hydrogen together--or, in other words, which constituted fertility--I begun, in the autumn of 1841, to experiment on a field which had been exhausted by a succession of crops, and which had just been cleared of one of oats. I chose an exhausted field in preference to any other, as the only one in which I could test the truth of the theory. It was very foul, being full of couch grass and weeds of all kinds. It was ploughed up and hastily picked over, for the season was so unfavourable for cleaning the land (from the great quantity of rain that fell) that I was almost induced to abandon the experiment. Previously to sowing the seed, one-fourth of the field was manured with a compost of night-soil and coal-ashes, at the rate of forty tons to the customary acre (7840 yards); the remaining three-fourths having the seed put in without any manure whatever. The winter was very unfavourable for the plants in our cold wet soil, and in the unmanured part of the field many of them perished, and those that survived made very little progress, from having no stimulus at the roots. Thinking it desirable to apply my experimental manures in moist weather, I waited until the 6th May, when I treated that part of the field which had _not_ been manured (three-fourths of the whole) in the following manner. I applied guano to one-fourth, at the rate of two hundredweight to the statute acre, and the same weight of nitrate of soda over another fourth, leaving one-fourth entirely without manure. The wheat manured with the guano and nitrate of soda grew vigorously, and the ears, more particularly in the part manured with guano, were the finest I had ever seen, but when it came to ripen it shrivelled in the ear, and the sample was very indifferent; the soil being evidently deficient in some property necessary for perfecting the grain. The crop also suffered much from the depredations of the birds.

 
The portion manured with night-soil produced
to the statute acre 32 bushels of 60 lbs. each.

Guano " " 27 " " "
Nitrate of Soda " " 27 " " "
Unmanured part " " 19 2/3 " " "

I give these details to show that the land was in an exhausted state previous to the commencement of the experiment I am now about to detail. After the crop of 1842 was reaped, the land was immediately ploughed up, and the season being very favourable, it was tolerably well cleaned, and the seed was sown (without any manure) about the first week in October. After the wheat came up, it was manured with a dusting of one hundredweight of guano, over the entire field (about one acre, three roods), to keep the plants alive through the winter. In the spring, being divided into three portions, it was manured with the same number of experimental manures, which were furnished to me by Mr. Blyth, of Church, near Accrington, who also analyzed the soil and subsoil for me. These manures were applied about the 10th of April, and the experiment was still further varied by covering a portion of each division with guano a fortnight afterwards, at the rate of two hundredweight to the acre, but all the manure applied to the crop, including the hundredweight of guano put on in the autumn, did not exceed 6 1/2 hundredweight. The crop, which was a very thin one in the spring, improved so much by the application of these manures, that when it came into ear, it was allowed by all who saw it to be the best in the neighbourhood; but the heavy rains of July caused it to lodge in the best part of the field, and there it was attacked by rust, and the sample was very indifferent. In addition to this drawback, there being very little wheat grown in the neighbourhood of the town, and this being much earlier than any of the other fields, was attacked by the birds as soon as the grain was formed in the ear. Notwithstanding all the efforts made to prevent them, they continued feeding upon it until it was cut; and it is a very moderate estimate of the damage, to say that they destroyed one- fourth of the crop throughout the field. That part of the field covered with manure (No. 1) being the earliest, suffered most. There were patches of several square yards where there did not appear to be a single grain left; and wherever the birds took a grain from the middle of the ear, when in the milky state, the grains on each side of it appeared to grow no more, but shrivelled up in the ear.

I have little doubt that in this portion of the field one-third of the crop was destroyed. All this seems to reduce the experiment to little more than guess-work; and it will, probably, be very difficult to persuade those who did not see the field when it was cut, to credit this report of the devastation made by the birds; even when they are told that Clitheroe is a town of 7,000 inhabitants, and probably as many sparrows, and that apparently they were all assembled to feed in this field; and they became so accustomed to the good living they found there, that even when our neighbours' wheat was fit to eat, they continued to favour this field with their visits in preference to going elsewhere. I estimate the damage on No. 1 at one-third, No. 2 at one-fourth, No. 3 at one-fifth; this was later than the others, and suffered more from rust than birds.

The following are the results:--From 3,060 yards manured with No. 1, there were obtained 1,042 lbs. of wheat, or 27 1/2 bushels of 60 lbs. each to the statute acre; if we add one-half to this, as we assume that one-third was destroyed by the birds, it will give 41 1/4 bushels to the statute acre. The weight of straw from this portion was 188 stones 5 lbs., 14 lbs. to the stone. From 2,856 yards manured with No. 2, 962 lbs. of wheat were obtained, and 155 stones 9 lbs. of straw; this is equal to 27 1/4 bushels per acre, or with one-third added, for estimated damage, it is equal to 36 bushels per statute acre. From 2610 yards manured with No. 3, there were 1,067 lbs. of wheat, and 211 stones 7 lbs. of straw, or 33 bushels to the statute acre, to which if we add one-fourth, according to the estimate of damage, it will be equal to 41 1/4 bushels per acre. It will be observed that this portion yielded a far greater weight of straw per acre than either of the others, and from the sort of manure applied, it was expected that this would be the case.

No. 1 yielded straw at the rate of 297 3/4 stones per acre. " 2 " " " " 246 3/4 " " " 3 " " " " 392 1/3 " "

Many people may feel inclined to say, that all these apparent data are mere guesses, and that a crop may be made into anything one likes, if they assume so much for damages; but, fortunately, it is not all guess-work. I have stated previously that I covered a part of each division with guano a fortnight after the application of the manures in April, intending to see what advantage was obtained by the use of it; but, owing to the depredations of the birds, the portions of the first and second divisions manured with guano were not kept separate from those which were left without guano; but the third being later, and, therefore, not so much injured by them, gave me an opportunity of ascertaining the effect. I measured off a land which had been so manured, and reaped and thrashed it out separately. From this land of 100 yards long and 10 feet wide (3,000 square feet), there was obtained 220 lbs. of wheat, or 53 bushels of 60 lbs. per statute acre; and this was far from being the best portion of the field. I don't mean that it was not the best portion of the crop, but I mean that the soil was not so good there as it was in other parts of the field; as I have before stated, in the best part of the field the crop was spoiled by being lodged by the rain, and subsequently attacked by rust.

I communicate this to you, in the hope that the publication of it in your paper maybe the means of stimulating others to try the same experiments. It is not too late yet to try for the next year's crop, and I have no doubt that Mr. Blyth will be happy to supply both material and information to any who may require them from him. It is the duty of everyone to promote the advancement of agriculture; and this is my contribution towards it. I have not yet done, for I have sown the same field with wheat again, and hope, with a favourable season, to reap a still more abundant crop next year.

* * * * *

_To the same._

CLITHEROE, _October 12th_, 1844.

SIR,--Last October you published an account of an attempt of mine to grow wheat on the same land year after year; and, as I have repeated the experiment this year, I shall be obliged if you will be kind enough to insert the account of it in the "Guardian," as the subject appears to me to be an important one; and, as many persons who may read this letter may either not have seen the former, or may have forgotten it, I trust that a short summary of the former experiments may not be out of place.

These experiments took place in the autumn of 1841, after the field had been cleared of a crop of oats, which was a very bad one; the land being not only naturally poor, but foul and exhausted by long cropping. As the season was very wet, it was indifferently cleaned, and one-fourth of it manured with a compost of night-soil and ashes, and then the field was sowed with wheat. Two of the remaining three-fourths were manured on the 6th of May, 1842 (the spring being a very dry one, no rain came until that day), one with guano, the other with nitrate of soda, each at the rate of two hundredweight to the statute acre, and the remaining fourth was left unmanured.

The following were the results at harvest:--That manured with night-soil and ashes produced 32 bushels of 60 lbs. per acre; guano, 27 bushels; nitrate of soda, 27 bushels; unmanured, 19 2/3 bushels. When the field had been cleared of the crop, it was immediately ploughed up, and, as the season was favourable, the land was well cleaned and sowed with wheat in October, 1842, without any manure except 1 cwt. of guano, which was scattered over it when the wheat was coming up. The field was divided into three portions, and in April, 1843, was manured as follows:--No. 1, with 90 lbs. of sulphate of magnesia, and 2 cwt. nitrate of soda to the statute acre; No. 2, with a compound from a manufacturer of chemical manures; No. 3, with 60 lbs. of silicate of soda and 2 cwt. of nitrate of soda to the acre; and, with the view of still further varying the experiment, a part of each portion was sowed with guano a fortnight after the application of the chemical manures. The crop promised to be a very good one, but it was much plundered by the birds, and as the summer was wet, it suffered also much from rust. Allowing for the destruction occasioned by the birds, the crop was estimated at:

 
41 1/4 bushels in patch No. 1,
36 " " No. 2,
41 1/4 " " No. 3,

and in that part of No. 3 which was also covered with guano, it reached by actual weight (not by estimate), 53 bushels of 60 lbs. to the acre. Those patches in Nos. 1 and 2 which had guano put on them, suffered so much from the depredations of the birds, that no account was taken of them separately. The crop was cleared off the land, which was cleaned, and again sowed with wheat on 3rd October, 1843. It was drilled in rows seven inches apart, and at the rate of 2 1/2 bushels to the acre. It is to the results of this crop that I now wish to call your attention. Before sowing, the land was subsoiled to the depth of from 14 to 16 inches; except a strip of about 10 feet in width, down the middle of the field, which was left untouched for the purpose of determining what were the advantages derived from subsoiling. If the advantage was merely that of thorough draining (for the field had not been thoroughly drained previous to the subsoiling), it was thought probable that this strip of 10 feet wide would be drained by the subsoiling on each side of it; but if, in addition to this, the wheat plant derived more nourishment by striking its root deeper into the soil, where that was loosened by the subsoil plough, the crop ought to be better in the subsoiled than in the unsubsoiled part. The field runs over the ridge of a hill, and upon that ridge the soil is so poor and thin, that it was deemed expedient to give it a slight dressing of coal-ashes and night-soil, from an idea that the plant would scarcely survive the winter unless some stimulus were applied there; but the ashes contained little manure, and were only applied to the worst part of the field, covering about one-third of its surface. The wheat was Spalding's Prolific; it came up evenly and well all over the field. It was hand-sowed with lime early in February to the extent of about 24 cwt. of dry lime on the acre. In order to ascertain the value of lime, and the proper quantity, I had the field uniformly covered with it, except one land, which was left entirely without, and the headlands, which had one three, the other six times as much lime put upon them as any other part. The field was also dressed with a chemical manure of the following ingredients on the 16th March, costing:--

 
L. s. d.

1 1/4 cwt. nitrate of soda 0 17 6
1 " impure sulphate of magnesia 0 5 0
3/4 " silicate of soda 0 11 3
3/4 " common salt 0 2 0
1 1/4 " gypsum 0 2 0
Mixing and applying it, say 0 2 3

Total for statute acre L2 0 0

Speculating on the probability of a dry summer, I gave it an extra quantity of manure, and I think where guano is used afterwards, as it is by me, the nitrate of soda might be dispensed with, which would bring the cost to L1 2s. 6d. per acre. I should prefer guano to nitrate of soda, because of the phosphates contained in the former. At the distance we are from the sea (about thirty miles) it would seldom be necessary to apply common salt, as the gales of winter generally bring as much as is needed; but last winter we had no high winds, and I thought that where salt was applied with other chemical manures, the wheat was more luxuriant than where there was none; but owing to a misunderstanding of the instructions to that effect, the produce was not kept separate. When the chemical manure was applied, one land was left without, for the purpose of comparison. Guano was sowed on the land on the 29th March, at the rate of something less than 2 cwt. to the statute acre, one side of the field being covered with Peruvian, the other with African, and the land on which no chemical manure had been sowed was half of it covered with guano, and the other half left without anything except lime; but as it was thought desirable to ascertain the value of the chemical manure without guano, half of this patch was sowed with the chemical manure in April, after the long drought of the last spring had set in. A small patch was left without manure, to show the natural condition of the field, and to serve as a comparison with the manured part alongside it, and also with the condition of the field when the experiment commenced, 1841-2, when the unmanured portion yielded only 19 2/3 bushels to the acre. This part of the experiment, however, was frustrated by the carelessness of the men who thrashed out the wheat. The crop was a very good one throughout the field, but was evidently shorter and thinner where there was no lime, and also where guano was applied alone. It was best on the headlands where more lime had been applied. The weather was extremely favourable until the wheat was going out of bloom, but it then changed, and the crop was beaten down by the rain, in some places so thoroughly that it never rose again; and from that time to the day it was reaped (21st August), there were not more than six fine warm days. This cold and ungenial weather would, no doubt, materially affect both the quantity and quality of the crop,--the sample only being just fair. On thrashing out the crop, I find the result to be as follows:--Where the guano and chemical manure were applied, but no lime, the yield was 49 1/5 bushels of 60 lbs. per statute acre; where the land was left unsubsoiled, it was 52 1/2 bushels; when guano alone was applied, it was 42 1/3 bushels; where the chemical manure alone was applied, it was 43 1/2 bushels; where the African guano was applied, it was 45 bushels; where the Peruvian was applied, it was 52 2/3 bushels; on the headlands, where three times the quantity of lime (or 3 1/2 tons per acre) was applied, it was nearly 62 bushels; and where six times the quantity of lime (or 7 tons to the acre), it was 49 2/3 bushels. I give this last result as it was ascertained, but do not consider it conclusive, for the wheat plant on this headland looked quite as well as the other, until it went out of bloom, when from some unknown cause it was partially blighted; an irregular patch from a foot to a yard in width and extending almost from end to end of the headland becoming brown and parched, as if affected by lightning or some atmospheric visitation. With the view of making these results a little clearer to the eye, I subjoin the following tabular statement of the produce per acre in the different parts of the field:--

 
Bushels of 60 lbs. per statute acre.

Guano alone 42 1/3
Chemical manure alone 43 1/2
Guano and chemical manure, with 24 cwt.
lime to the acre, but land unsubsoiled 52 2/3
Guano and chemical manure, but no lime 49 1/5
African guano and lime 45
Peruvian " " 52 2/3
" " and 3 times as much lime 62
" " and 6 " " 49 2/3
Average crop throughout the field 50

It may be as well to observe, that the total expense of manure, and of its application to that portion of the field which produced sixty-two bushels per acre (including the guano and the additional quantity of lime used), was at the rate of 81s. per statute acre. Deducting the cost of the nitrate of soda, the utility of which, under the circumstances, I am inclined to doubt, it would have been 63s. 6d. I consider these to be very favourable results, and as offering strong inducements to continue the experiment. I have accordingly had the land ploughed up and cleaned; and it was again sowed with wheat on the 9th inst. Having detailed the general results of the experiment, I beg to offer the following remarks upon some points in it, which seem to me to require a little elucidation. I consider the success of this experiment to be in a great measure owing to the use of soluble silica and magnesia; because, although there is an abundance of silica in the soil, my first crop showed very miserable results, the grain being ill-fed and poor, and the straw soft and discoloured, although the year 1842 was, in this district, very favourable for wheat, the month of August being singularly fine and warm; but when I combined the nitrate of soda with sulphate of magnesia, as in experiment No. 1 in 1843, but still more so when I combined it with the silicate of soda, as in No. 3 of that year, the straw became as strong, firm, and bright as need be desired; and this year when both these salts are combined with nitrate of soda, common salt, and gypsum, I have not only good and bright straw, but also an abundant crop of wheat.

With respect to the lime used, it may be as well to state that the field had not been limed for many years, and although in a limestone district, showed a deficiency of lime on analysis. The soil is a strong loam, on a brick clay subsoil, in which there is little or no lime, although the stony clays, which form the subsoil in a great part of the district, abound in it, containing from twenty to thirty per cent. of carbonate of lime. I had always believed that lime was used in great excess in this neighbourhood, and had, in fact, an idea that its good qualities were overrated, inasmuch as it does not enter into the composition of the plant, except in very minute proportion; but last winter I saw a paper (by Mr. Briggs of Overton) on the possibility of growing wheat on the same land year after year, in which the utility of lime in preventing rust was incidentally touched upon. I also saw Liebig's letters explaining the action of quicklime in liberating potash from the clay; and then I considered it very important to ascertain the proper quantity to be applied. The quantity required to decompose the phosphate of iron was not great, and assuming Liebig's theory of its action in liberating the potash to be true, it seemed to me that an excess of lime would permanently impoverish the land; for, supposing that the crop required 100 lbs. of potash, and as much lime was applied as liberated 500 lbs., what became of the 400 lbs. which did not enter into the composition of the plant? was not a large portion of this 400 lbs. washed down the drains by the rain, and so lost for ever? Perhaps the absence of lime in this field accounts for its beneficial action in the experiment just detailed; but if my supposition is correct, that any excess of potash which may be liberated from the clay by the use of quicklime (that is, any more than may be required to perfect the crop), is washed down the drains, and thus the land is permanently impoverished by the excessive use of lime, it behoves landed proprietors to ascertain what is required, and they should take care to apply no more than is necessary. This caution is most particularly needed in this neighbourhood, where lime is cheap, and where the opinion is prevalent that the more there is applied the better it is for the land, and where it is common to apply ten or twelve tons to the acre. I have stated above that chemical manure was applied to a small portion of the field after the setting-in of the drought in April. The action of this manure showed that a good thing may be very injurious if applied at an improper time; for, although it produced a stimulating effect on the plant immediately after its application, there was too little moisture in the land to dissolve it thoroughly, and thus enable the plants to appropriate it, until the rain came, about the end of June, when the wheat had been in flower some time; but the stimulus was then so great that all the plants threw up fresh stalks (from the roots), which were in flower when the wheat was cut, and it was then found that they had not only impoverished the plants, but had prevented the grain from ripening. This was the case not only in the experimental field, but in several others also, where the chemical manure was sowed after the setting-in of the drought. When the field was sowed with guano, it was thought desirable to cover one part of it with the African, and the other with Peruvian, for the sake of comparison; but as the African did not appear to produce the same stimulating effect as the other, fifty per cent. more was applied, that the cost might be equal (the Peruvian cost 10s., the African 7s. per cwt.); but as the latter application of the African was made when the wheat was just shooting into ear, the same objection applies to the experiment which does to the chemical manure applied after the drought had set in--viz., that there was not sufficient moisture in the soil to dissolve it thoroughly until the plant was too far advanced to benefit by it; and therefore its failure would be no proof of the value of the African as compared with the Peruvian, which was the object of the experiment. It is true, no bad effects followed the application similar to those produced by the misapplication of the chemical manure in dry weather, yet if soluble salts like the latter did not find sufficient moisture in the ground when applied in April, there is reason to suppose that the former would not do so when applied in May. I regret the failure of the experiment without any manure, as I think the result would have shown satisfactorily that the land is so far from being impoverished by this system of cropping, that it is improving every year. I think, however, that this is shown by the produce of the land manured with guano alone. In the first year's experiment the produce from guano alone was 27 bushels per acre, and both straw and wheat were very indifferent in quality. This year the produce from guano alone is 42 1/3 bushels; and although neither straw nor wheat are so good as upon the adjoining lands, they are both very much better than they were in 1842. It will be observed that the result from the unsubsoiled portion is very good, and if nothing more were said about it, people would be led to conclude that there was no advantage in subsoiling. But this, in my opinion, would be a great mistake; for to say nothing of the advantage which the unsubsoiled portion would derive from the drainage which it received from the subsoiling on each side of it, I found, when the field was ploughed up this autumn, that whilst the unsubsoiled portion was stiff and heavy, the subsoiled part was comparatively friable and loose, like a garden, and will, I expect, show its superiority in the succeeding crops. It must be borne in mind, in reading these experiments, that we have here one of the most unfavourable climates in the kingdom for growing wheat, from the excessive quantity of rain that falls, three times more rain falling annually in the north of Lancashire than at York, and this, no doubt, is very prejudicial to the success of such a series of experiments as I have been detailing. It has been objected to these experiments, that allowing all to have been done which is here detailed, it leads to no important conclusion; for although it may be practicable to grow wheat every year, in a small field like the one experimented on, it is not so on a large scale. But the objectors should remember that there is not the seed of a single weed sowed with the manure; and therefore if the land is thoroughly cleaned, and kept so, by hoeing the crop in the spring, it will require very little labour to fit it for another. But I shall be better able to speak on this head next harvest, having sowed wheat on an oat stubble with once ploughing. It is said there are no weeds in Chinese husbandry, and if they can eradicate them completely, so may we, if we adopt the same methods and follow them up as perseveringly. Again, admitting that it is not practicable to grow wheat on the same land year after year on a large scale, yet if we can double the crop in those years in which we do grow it, by the application of chemical manures (and the same manures are applicable to all cereal crops), will not that be a conclusion worth arriving at? That it is possible to do so, is, I think, sufficiently shown by the results I have obtained. What, then, may we expect when these experiments are infinitely multiplied and varied, under the superintendence of skilful and experienced men, who will devote their whole time and attention to the subject? Will raising the average produce from twenty-five to fifty bushels per acre be the utmost limit to which improvement can be carried? I believe not. In conclusion, I would urge on all owners and occupiers of land, the importance of devoting at least a small field to agricultural experiments, as I think there can be no doubt that, if these are carefully and systematically made and followed up by agriculturists generally, we shall be so far from needing an importation of corn in average years that we shall have a large surplus to spare for our neighbours.

NOTE.--In the use of silicates of soda and potash one precaution is very necessary--viz., that you really have a soluble silicate, and not a mere mechanical mixture of ground flint and soda: this is a very different thing, and one, if it be not carefully guarded against, which will lead to nothing but disappointment. Again, the silicate may be properly made in the first place, but in a long exposure to the atmosphere the soda attracts carbonic acid, and the soda is liberated, and this has defeated my expectations more than once. Again, though I consider it desirable to defer the application of it until vegetation has fairly started in the spring, yet, in one instance, I delayed the application of it so long, that there was not moisture to dissolve it until the end of June, and then the wheat began to shoot afresh from the roots and the crop was seriously injured by it: but this was in an exceedingly dry spring, and might not happen again for many years.

* * * * *

_To the same._

LOW MOOR, _18th December_, 1845.

SIR,--I promised to communicate to you the results of my attempt to grow wheat on the same land year after year, this being the fourth crop of wheat (the fifth white crop) grown in successive years on the same soil, and though I consider the crop an indifferent one, I don't think the failure ought in any degree to be attributed to the over-cropping, but to the wetness and coldness of the season, as well as other untoward circumstances hereafter to be mentioned.

In a former letter of mine of the 12th October, 1844--which was published in the "Guardian" a few days after--I gave an account of the crop of 1844, which was a very good one, being fifty bushels to the acre throughout the field, and as much as fifty-two bushels in the best part of it. This I considered so satisfactory that I had the field again ploughed up and sowed with wheat on the 9th October, 1844, and it is to the results of this crop that I wish to call your attention. As remarked in my former letter, the field was subsoil ploughed in the autumn of 1843, and this subsoiling was carried to such a depth that most of the drains in the field were more or less injured by it; and although this did no injury to the crop of 1844, owing to the very dry season, yet when the rain came in the winter of 1844, the want of drainage was found to be very prejudicial, and in the wet places large patches of the young wheat went off altogether, and there was a great deficiency of roots in many parts of the field; the long continuance of frost and after that the ungenial weather which continued so long in the spring (of 1845) were also unfavourable, yet with all these drawbacks the appearance of the plant after the growing weather _did_ come, was very promising, and many of my friends predicted that I should have as good a crop as in 1844. On the 24th March I applied chemical manure of the same kind as I had done in 1844, at the rate of about 3 1/4 cwt. to the acre (costing 23s. 6d.), and a fortnight after I had it sowed with 2 cwt. of guano to the acre. When the warm weather came, these manurings seemed to help it wonderfully, and it was, as I have before stated, a very promising crop; but the cold, ungenial weather we had through a great part of the summer, and the continued rain we had whilst the wheat was in flower, destroyed all the former promise: and the manuring with guano, so far from being beneficial, was very injurious--so much so, that I believe every shilling's-worth of it applied to my wheat this year, made the crop a shilling worse than if nothing had been applied; and all ammoniacal manures had the same effect. It may be asked how I know it was the guano, and not the chemical manure. In answer to this inquiry, if made, I may observe, that I supplied two of my neighbours with the chemical manure, and they applied it without guano on very poor land, and they both assert they had never such good crops of wheat before; but everywhere in this neighbourhood, the only good samples of wheat that I saw or heard of were grown on exhausted soil. This appears to me to be a strong proof that chemistry has a great deal to learn before it can adapt its measures to all varieties of seasons, particularly as it cannot know beforehand how the season may turn out. If further proof be required of the injurious effect upon grain crops of ammoniacal manures in general, and of guano in particular, I may mention that in another field of wheat, sowed on the 21st December, and which did not come up until the frost broke, in March (the previous crop having been Swedes), the blade was so yellow and the plant altogether so small and sickly in appearance, that I had it manured with a water-cart from a cesspool in April. This appeared to produce a wonderful improvement immediately, as the plant assumed a deep green and grew very fast, but when it ought to have shot, the heads seemed to stick in the sockets, the blade and straw became mildewed and made no progress in ripening. It was not fit to cut for three weeks after the experimental field, although it was an early white wheat, and the result was a miserable crop--far worse than the experimental field. The instance of injury from the use of guano, I had from a neighbour, who told me he had sowed a patch of oats with it, and that they never ripened at all, and that he was compelled to cut them green as fodder for his cattle. I had a striking proof this season of the much lower temperature required by oats than wheat, when strongly stimulated by manuring. I had gathered an ear of wheat and a panicle of oats the previous season, which seemed to me to be superior varieties; and that they might have every chance, I dibbled them alongside each other in my garden, and determined to manure them with every kind of manure I could procure, as I had an idea that it was not easy to over-manure grain crops, if all the elements entering into the composition of the plant were applied in due proportion to each other, and I also wished to ascertain whether wheat and oats would thrive equally well with the same sort of manuring. I accordingly limed the land soon after the wheat came up, and in March I applied silicate of soda, sulphate of magnesia, gypsum, common salt, and nitrate of soda. A fortnight after this I applied guano, then bones dissolved in sulphuric acid, then woollen rags dissolved in potash (the two latter in weak solution); and the consequence was, that I don't think there was a single grain in the whole parcel--at least I could not find one--the straw was no great length, and the blade much discolored with mildew, whilst the oats were seven feet high, and with straws through which I could blow a pea, and large panicles, although the oat was not particularly well-fed. The inference I have drawn from these experiments is, that as far as is practicable the manuring should be adapted to the temperature, but as this is obviously impossible in a climate like ours, the only way is to rather under than over manure, and to apply no ammoniacal manure to the wheat crop, or at all events very little; for although guano was beneficial to wheat when used in conjunction with silicates, &c. &c. in 1844, yet the injury it did in 1845 may very fairly be set against that benefit. I should feel obliged if any of your readers who may have tried the experiment of manuring grain crops with guano, the last season (1845) would publish the result as compared with a similar crop without such manuring. I feel convinced that such result would be against the use of guano for wheat in 1845. I am the more confirmed in the opinion that ammoniacal manures are unfavourable for wheat, by a series of articles in the "Gardener's Chronicle" on the "Geo-Agriculture of Middlesex," in which the writer states that land in that county which in Queen Elizabeth's time produced such good wheat that it was reserved for her especial use, will now scarcely grow wheat at all, and when that grain is sowed upon it, the straw is always mildewed, and the sample very poor; and this is attributed--and no doubt justly so--to the extensive use of London manure. My crop was only 32 bushels to the acre of 60 lbs. to the bushel; last year the crop, as I have said before, was 50 bushels of the same weight.

* * * * *

_To the same._

CLITHEROE, _7th March_, 1848.

On continuing my attempts to grow wheat on the same land year after year, I observed that the crop of 1845 was very seriously injured by the deficient drainage--the old drains having been destroyed by the subsoil plough. It was therefore necessary to replace them: they were accordingly put in four feet deep. This occupied so much time that the season for sowing wheat had gone by, and the ground was cropped with potatoes, which were got up in September, and the wheat might have been got in early in October. But seeing in your paper that sowing too early was not advisable, and also being carried away by the arguments of the thin-seeders, I deferred sowing until the middle of November, and then put in little seed; and the winter proving very unfavourable, when the wheat was coming up, there was not half plant enough in the spring, and I hesitated whether to plough up the ground or drill in barley. I determined to do the latter, which was done on the 18th April, and wheat and barley grew up together, and when cut and threshed, proved to be equal to 48 bushels to the acre.

* * * * *

LOW MOOR, _31st December_, 1844.

HENRY BRIGGS, ESQ.

I duly received your obliging letter in reply to my pamphlet on the growth of wheat year after year on the same land, and now offer my rejoinder to your remarks. You seem to consider the expense is too great under the system pursued by me; and that it was more than was required by the crop, is proved in my opinion by the fact that the fertility of the land is very much augmented since the commencement of the experiment in 1841: as my first crop with guano alone produced only 27 bushels per acre, whilst this year from guano alone the produce was 42 bushels. But still I think that your allowance of manure is far too little, and not exactly what I should apply, and I shall frankly state my objections and opinions, in the hope that they may elicit a reply from you, as it will be from discussion and the experiments instituted to test the various theories propounded, that agriculture will be most materially benefited. You state that Liebig's present theory is, that plants obtain the necessary oxygen, hydrogen, carbon, and nitrogen from the rain and atmosphere, and that the plants merely require the supply of inorganic constituents, and that you are inclined to agree with him. My copy of his work on the Chemistry of Agriculture is his first edition; and I don't know how far he has since modified or altered the opinions therein expressed, which are in some degree at variance with each other. He states that it may be received as an axiom in agricultural chemistry that the nitrogen of the atmosphere is never assimilated by plants, except in the form of ammonia or nitric acid. He certainly states that plants and animals derive their nitrogen from the atmosphere; but why, if this be true, does he attach so much importance to the excrements (particularly urine), of men and animals being husbanded with so much care? and he states that for every pound of urine wasted, a pound of wheat is thrown away. But even if he said it was utterly worthless, every practical farmer who has tried it knows how exceedingly valuable it is. It may be said there are other ingredients in urine besides ammonia, and these are what make it valuable; and in reply to this I would ask what is it that makes the ammoniacal liquor from gasworks so valuable? There are no phosphates or alkalies there, and yet what a powerful stimulant it is. Again, Liebig states that the carbon is derived from the atmosphere; but to say nothing of the argument which might be deduced from the advantage which is derived by plants from having their soil loosened about their roots, the experiments of Dumas and Boussingault prove that a tree which was cut off below the branches expired a large quantity of carbonic acid. It may be asked how I know this was not precipitated by the rain. I don't know; but if the plant would assimilate this, why should it not assimilate that which arises from the decomposition of the carbonaceous matter in the soil? My idea is that it does both, and that carbon in the soil does good if it offers an abundant supply of carbonic acid to the plant when it is in a condition to appropriate it. Your allowance of lime appears to me to be far too small, for if any reliance can be placed on my experiments, lime can be profitably used to far greater extent than you seem to imagine. And, again, you seem to think that where there is plenty of silex in the soil, the plant will be able to obtain as much as it requires. I think that it is quite necessary that the silex should be in a soluble state, as I think that it is not only desirable that all the elements necessary to fertility should be in the soil, but that they should be in such a form that they can be assimilated by the plant. Some of our compounds for producing fertility may perhaps be as absurd as it would be to give muriatic acid to a man troubled with indigestion, because free muriatic acid is found in the stomach of a healthy person. Let me recommend you to try both silex and magnesia in a soluble state, and I think you will be satisfied with the benefit derived from their use.

Recurring again to the quantity of manure necessary to grow thirty-six bushels of wheat, I would ask, why limit yourself to so small a crop? The difference in the cost of your manuring a field, and my manuring it, is more than made up by the increase of fourteen bushels of wheat and the corresponding increase of straw, even if the land did not improve every year by the application; and as the seed, rent, labour, and liabilities of the land are the same whether you grow a small crop or a large one, why not have it as large as possible? Again, if I applied far more manure than was necessary, I ought to have had the crop equally good throughout the field; but on the ridge of the hill, where the soil was thin and poor, neither straw nor wheat were so good as they were where it was deeper and richer. My own opinion is, that the plant is never able to extract from the soil all the manure, and therefore it ought to be brought up to a good standard before good crops can be expected. I am not satisfied with any analogy that I can think of, but the best that occurs to me is that of a cloth in a dye- copper. You can never get it to absorb either all or half the colouring matter, and if you don't use far more than is taken up by the cloth, you will never obtain the desired results. Besides, in chemical combinations it is desirable to use far more than the chemical equivalents, or the experiments don't succeed. I perceive that you intend to use guano next year, and that you intend to use it along with the seed. I trust it will not be sowed in contact with either the seed or the quicklime, which you proposed to use in some of your land. The best time I have found for applying guano is in wet weather, just when vegetation is making a start in the spring--say the last week in March, or the first week in April--as I fear a large part of the soluble portion of it would be washed away by the rains of winter. It is true we have had none this winter, but when shall we have such another? Did you ever use woollen rags as manure? They ought to be excellent, as they are almost all albumen, and are, I fancy, to be had at a very moderate price, not far from you. Can you inform me what it is that causes the land to be clover-sick? If it is the abstraction of something from the soil, what is that something? Sir Humphrey Davy said that a dressing of gypsum would prevent it; but clover does not succeed here (even when dressed with gypsum), if sowed every four years. One reason why I think so small a quantity of manure will not succeed, is based on the theory of excrementitious secretion. Decandolle proved that this secretion took place, but he did not succeed in proving that it poisoned the land for a similar crop. I can only reason from analogy, and it does not follow that an analogy drawn from animal life will hold good when applied to plants; but if we were to feed an animal with pure gluten and pure starch, with the proper quantity of phosphates, &c., are we to suppose it would have no excrements? Let this be applied to plants: are we to suppose that the plant assimilates all that is absorbed by its roots and leaves? When that which is absorbed is what would enter into the composition of the plant, is it not more rational to suppose that the inorganic and gaseous constituents only combine in fixed proportions, and that although the plant may absorb a much larger proportion of one than is required, the surplus is discharged excrementitiously, and perhaps may be unfitted for entering into the plant until it has undergone a decomposition? In conclusion, I trust you will pardon my frankness in so boldly canvassing your opinions; but it is in this collision of opinion that the truth will be elicited, and if I judge you aright, it is that you wish to discover whether it harmonizes with your preconceived notions or not.

* * * * *

LOW MOOR, _1st May_, 1845.

HENRY BRIGGS, ESQ.

I duly received your pamphlet on the use of lime, for which I am much obliged, and am delighted to perceive that you confirm the idea (expressed in my pamphlet on the growth of wheat every year on the same land) that the excessive use of lime is ultimately injurious to the fertility of the soil to which it is applied. This, coming from a gentleman of your reputation and experience, will, I hope, induce someone capable of performing the experiment to endeavour to ascertain with precision how much lime it is desirable to apply to an acre to give the best results, and with the least waste, assuming that the land contained little or none previous to the experiment; and it would also be desirable to ascertain whether it is better, in an economical point of view, to apply a small quantity every year, or a larger quantity every third or fourth. My own opinion is in favour of the former method, except that it is difficult to get it ploughed in, particularly in wet weather, immediately after spreading (which is essential where you grow wheat on the same land every year) without injuring the feet of the horses. You speak of ten days or a fortnight being necessary to neutralize caustic lime, but our horses had their feet injured by it six weeks after it had been spread on the land, last year, although the weather had been wet almost the whole of the time, say from the beginning of February to the middle of March. You appear to think that lime will replace silica in the wheat plant. Whose authority have you for this? It will be very important to establish this supposition, but I fear it is too good news to be true. On referring to your letter, I find you don't say what I supposed you did, but that the lime liberates the soluble silicates, potash, &c. This may be, and certainly the beneficial effects of lime in growing wheat are not to be explained by any other hypothesis with which I am acquainted. I am this year trying some experiments to ascertain (if I can) the cause of clover- sickness, and I hope to be in a position to say whether your supposition that lime, gypsum, &c. will prevent it, is correct. My experiments so far are opposed to this theory, but it is not very safe or philosophical to draw conclusions from one or two experiments only. I doubt the possibility of making silicate of soda by merely mixing lime, sand, and salt together, as my chemical friends tell me this cannot be accomplished unless the silex and the alkali are fused together. If a soluble silicate of soda can be made in the way you mention, it will be a great saving of expense. Has it been tried? You have no doubt seen a report of the enormous crop of wheat grown in a field in Norfolk last year (90 bushels to the acre), and that the Royal Agricultural Society have determined to have the soil analyzed by Dr. Playfair. This is very desirable, but as Dr. Playfair is more of a lecturing than an analyzing chemist, I think it is very necessary that his analysis should be checked by another, made by the most eminent chemist that Europe can produce, for 90 bushels is so unheard-of a crop, that no expense should be spared which would enable us to ascertain what the soil contained to enable it to produce such a crop, which is the more remarkable as the field seems to have been a good many years under the plough. As your Wakefield Farmers' Club has many wealthy members in it, allow me to hint the desirableness of your undertaking this analysis, which, if properly performed, will be worth a thousand times more than its cost. When you are aware that even Davy missed 16 per cent. of alumina in one of his analyses and that the chemists of the present day don't seem to have detected the potash which exists so abundantly in potato-tops, you will, I think, agree how exceedingly important it is that such analysis should be checked by others, made without any communication between the parties. You speak of an original letter of Liebig's appearing in the "Farmer's Journal." On what subject is it? as I have no means of referring to the periodical in question. Does it throw any light upon the new manure for which he is said to be taking out a patent? You speak of humus and humic acid. What do you understand by humus? as, according to Liebig, humus sometimes means one thing and sometimes another, and he appears to treat it very much as modern chemists treat phlogiston, as something which they don't comprehend, but which they need to explain the phenomena of vegetation. If you are a believer in humus, what is it composed of, and how does it act in forwarding vegetation? I suppose you will reply, By combining with oxygen and forming humic acid. But would not the theory of the decomposition of carbon do quite as well? I don't perceive the injurious effects of quicklime upon grass land which you anticipate in your paper, but the contrary, and the more caustic it is the more beneficial is its action, so far as I can judge from my own experiments; and it is my practice in liming grass land to spread it as soon as I can get it into the state of flour. I shall be glad to hear the result of your electrical experiment--at present I am rather sceptical on the subject.

P.S.--Am I to suppose that you have abandoned the idea of manuring an acre of wheat for thirteen shillings?

* * * * *

THE CULTIVATION OF WHEAT.

_October 1st_, 1852.

To the Editor of the "Manchester Guardian."

The increasing quantity of agricultural produce consumed in this country makes it desirable that the cultivation of the land should be carried to the highest point consistent with profit; and the increasing scarcity of agricultural labourers will shortly render it difficult for the farmers in some districts to gather in their crops. It therefore becomes increasingly desirable that every mechanical contrivance which will facilitate their doing so should be made as perfect as possible; and also that the crops themselves should be so cultivated as to make these mechanical aids to work to the greatest advantage.

But it has been a difficult matter (at least in the wet climate of Lancashire) to ascertain how far it is prudent to manure for wheat, for in unfavourable seasons the plant runs so much to straw that it is liable to lodge, and become mildewed; in which cases the manure is not only wasted, but becomes positively injurious, as appears to be the case in the South of England this year, and as was also the case in the North in 1845, when every shilling expended in manuring the wheat crops of that year made the crop at least a shilling worse than if no manure had been applied.

But if we could find a wheat so short in the straw that it would bear heavy manuring without being lodged, wheat-growing would be a far less hazardous occupation than it is at present, and we might confidently calculate on a far greater production than we can now.

The following appear to me to be some of the advantages of growing a short-strawed wheat:--

1st. It will bear highly manuring without lodging, and with much less liability to mildew, than a long-strawed wheat.

2nd. The proportion of grain to straw is greater in short than in long-strawed wheat.

3rd. As it very rarely lodges, it will be far better suited to the reaping-machine than a long-strawed wheat; and no doubt other advantages will occur to the minds of experienced agriculturists.

When making these assertions I ought to state that my experience of wheat-growing does not extend beyond the counties of York and Lancaster, but from what I can learn of the agriculture of more southerly districts, I fancy these opinions of mine will be found correct even there. I may be asked to prove my assertion, and I will endeavour to do so.

I have been experimenting on the growth of wheat for the last ten or eleven years--particularly with reference to the practicability of doing this on the same land year after year; and that I might do it in the most satisfactory manner, I have varied my seed-wheat and my manure very frequently: but I very soon discovered that the advantages of abundance of manure and high cultivation did not insure good crops of wheat, inasmuch as in our moist climate, we had not one summer in five that was favourable, and consequently the crop was generally lodged, and the straw mildewed. I found that the time of sowing, and also of applying the manure, were matters of great importance, and it occurred to me that the remedy would be--a straw so short, that it would not lodge when highly manured. I consequently addressed a query to the "Gardener's Chronicle," asking what was the shortest-strawed variety of wheat known, and was told that Piper's Thickset was so; I therefore got some of this sort from Mr. Piper, which I have cultivated since 1847. It is a coarse red wheat, but the quality has improved with me every year, and this season _being the third successive crop on the same land_, I have nearly eight quarters to the statute acre from this variety.

2. The proportion of wheat in Piper's Thickset is 38 per cent. of the gross weight of the crop; in the Hopetown wheat (I speak of my own crops only), 34 per cent.

3. Not having seen a reaping-machine, it may seem absurd in me to say that short-strawed wheat is better adapted to it than long- strawed; but every report of the working of these machines goes to show that, so far, they are not well adapted to the cutting of laid corn; therefore a variety that always stands upright will be much better suited to the working of them.

I have been trying for the last six years to obtain (by cross- breeding) a wheat of good quality, and with a straw shorter than Piper's, but hitherto with indifferent success; but, thanks to the kindness of Messrs. Brownells, of Liverpool, who furnished me with many samples of Chilian wheat about three years ago, I have now got varieties much shorter in the straw than Piper's, and some which appear to be of much better quality, but these will require to be tested for a year or two before I can speak decisively about them. The Chilian varieties are very difficult to acclimatize. The original samples were beautiful white wheats, very much resembling the Australian, but when grown in Lancashire they resemble rye more than wheat, and three years' sowing has not much improved them. It has, however, enabled me to obtain crosses which seem better adapted to the soil and climate, and so short in the straw that the highest manuring produces no tendency to lodge.

If we could obtain a variety of wheat of good quality, which, instead of two tons of straw and one of wheat to the acre, produced a ton and a half of each, it might be profitably cultivated, and the differences in the chemical composition of grain and straw are not so very great as to make me despair of this being done some time or other. It may be asked, Where can a short-strawed wheat of good quality be procured? To this I am afraid the reply will be, Nowhere at present. But can none of our expert manipulators, who rejoice exceedingly when they cross-breed a geranium or a fuchsia, turn their attention to the cross-breeding of wheat? Cannot the Royal Agricultural Society offer a premium for a short-strawed wheat of good quality? Do none of the great agriculturists themselves see how desirable such a wheat would be for the agriculture of this country? Apparently not; for with the exception of Mr. Raynbird, of Hampshire, I am not aware of one scientific operator who is endeavouring to produce such a wheat. My own attempts at cross-breeding are such as may be tried by anyone who has sufficient perseverance, and (with one or two exceptions, of doubtful success) have been confined to sowing the different varieties I wished to cross in contiguous drills, and then sowing the produce of these. At the second harvest I carefully select such ears as differ from both varieties, and at the same time seem by their quality of grain and the shortness of their straw to be the best suited to my wishes. It has been, no doubt, to the accidental contact of distinct varieties that we owe the numerous kinds now known to agriculturists, and which differ from each other in colour, quality, yield, and comparative value in the various districts in which they are grown.

Fully sensible of my inability to do justice to this important subject, I yet hope (if you do me the honour to publish my letter) that my remarks may induce scientific men to consider it; for it appears unaccountable to me that hitherto they seem to have thought it unworthy of their attention.

P.S.--There is still time to try the experiment during the present season. If any gentleman wishes to try the short-strawed Chilian wheat, I shall be glad to give him a sample of it for the purpose of cross-breeding. Samples were sent to Mr. H. Briggs, Mr. Raynbird, and Mr. Stevenson, Stockport.

* * * * *

_January 27th_, 1848.

To the Editor of the "Agricultural Gazette."

You invite persons who have grown good crops of grain or turnips to forward you the particulars. I therefore enclose you an account of an attempt which I made to grow wheat on the same land year after year, that account reaching to the fourth white crop in 1844. As I still continue the experiment, I shall be in a position to continue the account up to the present time (as I am now threshing out the last year's crop), and will send it to you if you think it worthy of insertion in the "Agricultural Gazette."

If the account I now send is not worth inserting, please to send it to your correspondent A. W., who doubted whether there were authenticated instances of land producing eighty, seventy, or even fifty bushels to the acre.

I attribute my success in growing wheat to the use of silicate of soda, and yet, singularly enough, until now I have been unable to induce anyone else to try it. This season, however, several persons have applied to me to procure it for them. Among them is the talented editor of the "Liverpool Times," whose farm at Barton Moss shows what good management will accomplish on very unpromising soils. If, as I hope will be the case, the silicate of soda should supply to peat its greatest deficiency, no one will more readily discover it than Mr. Baines.

In the use of silicates of soda and potash, one precaution is very necessary, namely, that you really have a soluble silicate, not a mere mechanical mixture of ground flint and alkali. This is a very different thing, and one which, if it be not carefully guarded against, will lead to nothing but disappointment.

Again, the silicate of soda may be properly made, in the first instance, but in a long exposure to the atmosphere, the soda attracts carbonic acid, and is liberated from the silex, and this has disappointed my expectation more than once.

Again, though I consider it desirable to defer the application of soluble silicates until vegetation has made a fair start in the spring, yet in one instance I delayed the application of it so long that there was not moisture to dissolve it until the end of June, and then the plant began to send up suckers from the roots, and the crop was seriously injured by it; but this was in an exceedingly dry spring, and may not happen again for many years.

* * * * *

CLITHEROE, _March 7th_, 1848.

In continuing my attempts to grow wheat on the same land year after year, I observed that the crop of 1845 was very seriously injured by the deficient drainage--the old drains having been destroyed by the subsoil plough. It was therefore necessary to replace them; they were accordingly put in four feet deep. This took up so much time, that the season for sowing wheat had gone by, and the ground was cropped with potatoes, which were dug up in September, and the wheat might have been got in early in October; but seeing in your paper that sowing too early was not advisable, and also being carried away by the arguments of the thin-seeders, I deferred sowing until the middle of November, and also put in little seed, and the weather proving very unfavourable when the wheat was coming up, there was not half plant enough in the spring, and I hesitated whether to plough up the ground or to drill in barley. I determined to do the latter. It was put in on the 18th April, and wheat and barley grew up together, and when cut and threshed, it yielded 48 bushels to the acre.


[The end]
Thomas Garnett's essay: On The Cultivation Of Wheat On The Same Land In Successive Years

________________________________________________



GO TO TOP OF SCREEN