Home
Fictions/Novels
Short Stories
Poems
Essays
Plays
Nonfictions
 
Authors
All Titles
 






In Association with Amazon.com

Home > Authors Index > Browse all available works of John Joly > Text of Other Minds Than Ours?

An essay by John Joly

Other Minds Than Ours?

________________________________________________
Title:     Other Minds Than Ours?
Author: John Joly [More Titles by Joly]

IN the year 1610 Galileo, looking through his telescope then newly perfected by his own hands, discovered that the planet Jupiter was attended by a train of tiny stars which went round and round him just as the moon goes round the Earth.

It was a revelation too great to be credited by mankind. It was opposed to the doctrine of the centrality of the Earth, for it suggested that other worlds constituted like ours might exist in the heavens.

Some said it was a mere optic illusion; others that he who looked through such a tube did it at the peril of his soul--it was but a delusion of Satan. Galileo converted a few of the unbelievers who had the courage to look through his telescope. To the others he said, he hoped they would see those moons on their way to heaven. Old as this story is it has never lost its pathos or its teaching.

The spirit which assailed Galileo's discoveries and which finally was potent to overshadow his declining years, closed in former days the mouths of those who asked the question written at the head of this lecture: "Are we to believe that there are other minds than ours?"

Today we consider the question in a very different spirit. Few would regard it as either foolish or improper. Its intense interest would be admitted by all, and but for the limitations closing our way on every side it would, doubtless, attract the most earnest investigation. Even on the mere balance of judgment between the probable and the improbable, we have little to go on. We know nothing definitely as to the conditions under which life may originate: whether these are such as to be rare almost to impossibility, or common almost to certainty. Only within narrow limits of temperature and in presence of certain of the elements, can life like ours exist, and outside these conditions life, if such there be, must be different from ours. Once originated it is so constituted as to assail the energies around it and to advance from less to greater. Do we know more than these vague facts? Yes, we have in our experience one other fact and one involving much.

We know that our world is very old; that life has been for many millions of years upon it; and that Man as a thinking being is but of yesterday. Here is then a condition to be fulfilled. To every world is physically assigned a limit to the period during which it is habitable according to our knowledge of life and its necessities. This limit passed and rationality missed, the chance for that world is gone for ever, and other minds than ours assuredly will not from it contemplate the universe. Looking at our own world we see that the tree of life has, indeed, branched, leaved and, possibly, budded many times; it never bloomed but once.

All difficulties dissolve and speculations become needless under one condition only: that in which rationality may be inferred directly or indirectly by our observations on some sister world in space, This is just the evidence which in recent years has been claimed as derived from a study of the surface of Mars. To that planet our hope of such evidence is restricted. Our survey in all other directions is barred by insurmountable difficulties. Unless some meteoric record reached our Earth, revelationary of intelligence on a perished world, our only hope of obtaining such evidence rests on the observation of Mars' surface features. To this subject we confine our attention in what follows.

The observations made during recent years upon the surface features of Mars have, excusably enough, given rise to sensational reports. We must consider under what circumstances these observations have been made.

Mars comes into particularly favourable conditions for observation every fifteen years. It is true that every two years and two months we overtake him in his orbit and he is then in "opposition." That is, the Earth is between him and the sun: he is therefore in the opposite part of the heavens to the sun. Now Mars' orbit is very excentric, sometimes he is 139 million miles from the sun, and sometimes he as as much as 154 million miles from the sun. The Earth's orbit is, by comparison, almost a circle. Evidently if we pass him when he is nearest to the sun we see him at his best; not only because he is then nearest to us, but because he is then also most brightly lit. In such favourable oppositions we are within 35 million miles of him; if Mars was in aphelion we would pass him at a distance of 61 million miles. Opposition occurs under the most favourable circumstances every fifteen years. There was one in 1862, another in 1877, one in 1892, and so on.

When Mars is 35 million miles off and we apply a telescope magnifying 1,000 diameters, we see him as if placed 35,000 miles off. This would be seven times nearer than we see the moon with the naked eye. As Mars has a diameter about twice as great as that of the moon, at such a distance he would look fourteen times the diameter of the moon. Granting favourable conditions of atmosphere much should be seen.

But these are just the conditions of atmosphere of which most of the European observatories cannot boast. It is to the honour of Schiaparelli, of Milan, that under comparatively unfavourable conditions and with a small instrument, he so far outstripped his contemporaries in the observation of the features of Mars that those contemporaries received much of his early discoveries with scepticism. Light and dark outlines and patches on the planet's surface had indeed been mapped by others, and even a couple of the canals sighted; but at the opposition of 1877 Schiaparelli first mapped any considerable number of the celebrated "canals" and showed that these constituted an extraordinary and characteristic feature of the planet's geography. He called them "canali," meaning thereby "channels." It is remarkable indeed that a mistranslation appears really responsible for the initiation of the idea that these features are canals.

In 1882 Schiaparelli startled the astronomical world by declaring that he saw some of the canals double--that is appearing as two parallel lines. As these lines span the planet's surface for distances of many thousands of miles the announcement naturally gave rise to much surprise and, as I have said, to much scepticism. But he resolutely stuck to his statement. Here is his map of 1882. It is sufficiently startling.

In 1892 he drew a new map. It adds a little to the former map, but the doubling was not so well seen. It is just the strangest feature about this doubling that at times it is conspicuous, at times invisible. A line which is distinctly seen as a single line at one time, a few weeks later will appear distinctly to consist of two parallel lines; like railway tracks, but tracks perhaps 200 miles apart and up to 3,000 or even 4,000 miles in length.

Many speculations were, of course, made to account for the origin of such features. No known surface peculiarity on the Earth or moon at all resembles these features. The moon's surface as you know is cracked and streaked. But the cracks are what we generally find cracks to be--either aimless, wandering lines, or, if radiating from a centre, then lines which contract in width as they leave the point of rupture. Where will we find cracks accurately parallel to one another sweeping round a planet's face with steady curvature for, 4,000 miles, and crossing each other as if quite unhampered by one another's presence? If the phenomenon on Mars be due to cracks they imply a uniformity in thickness and strength of crust, a homogeneity, quite beyond all anticipation. We will afterwards see that the course of the lines is itself further opposed to the theory that haphazard cracking of the crust of the planet is responsible for the lines. It was also suggested that the surface of the planet was covered with ice and that these were cracks in the ice. This theory has even greater difficulties than the last to contend with. Rivers have been suggested. A glance at our own maps at once disposes of this hypothesis. Rivers wander just as cracks do and parallel rivers like parallel cracks are unknown.

In time the many suggestions were put aside. One only remained. That the lines are actually the work of intelligence; actually are canals, artificially made, constructed for irrigation purposes on a scale of which we can hardly form any conception based on our own earthly engineering structures.

During the opposition of 1894, Percival Lowell, along with A. E. Douglass, and W. H. Pickering, observed the planet from the summit of a mountain in Arizona, using an 18-inch refracting telescope and every resource of delicate measurement and spectroscopy. So superb a climate favoured them that for ten months the planet was kept under continual observation. Over 900 drawings were made and not only were Schiaparelli's channels confirmed, but they added 116 to his 79, on that portion of the planet visible at that opposition. They made the further important discovery that the lines do not stop short at the dark regions of the planet's surface, as hitherto believed, but go right on in many cases; the curvature of the lines being unaltered.

Lowell is an uncompromising advocate of the "canal" theory. If his arguments are correct we have at once an answer to our question, "Are there other minds than ours?"

We must consider a moment Lowell's arguments; not that it is my intention to combat them. You must form your own conclusions. I shall lay before you another and, as I venture to think, more adequate hypothesis in explanation of the channels of Schiaparelli. We learn, however, much from Lowell's book--it is full of interest.[1]

[1] _Mars_, by Percival Lowell (Longmans, Green & Co.), 1896

Lowell lays a deep foundation. He begins by showing that Mars has an atmosphere. This must be granted him till some counter observations are made.

It is generally accepted. What that atmosphere is, is another matter. He certainly has made out a good case for the presence of water as one of its constituents,

It was long known that Mars possessed white regions at his poles, just as our Earth does. The waning of these polar snows--if indeed they are such--with the advance of the Martian summer, had often been observed. Lowell plots day by day this waning. It is evident from his observations that the snowfall must be light indeed. We see in his map the south pole turned towards us. Mars in perihelion always turns his south pole towards the sun and therefore towards the Earth. We see that between the dates June 3rd to August 3rd--or in two months--the polar snow had almost completely vanished. This denotes a very scanty covering. It must be remembered that Mars even when nearest to the sun receives but half our supply of solar heat and light.

But other evidence exists to show that Mars probably possesses but little water upon his surface. The dark places are not water-covered, although they have been named as if they were, indeed, seas and lakes. Various phenomena show this. The canals show it. It would never do to imagine canals crossing the seas. No great rivers are visible. There is a striking absence of clouds. The atmosphere of Mars seems as serene as that of Venus appears to be cloudy. Mists and clouds, however, sometime appear to veil his face and add to the difficulty of making observations near the limb of the planet. Lowell concludes it must be a calm and serene atmosphere; probably only one-seventh of our own in density. The normal height of the barometer in Mars would then be but four and a half inches. This is a pressure far less than exists on the top of the highest terrestrial mountain. A mountain here must have an altitude of about ten miles to possess so low a pressure on its summit. Drops of water big enough to form rain can hardly collect in such a rarefied atmosphere. Moisture will fall as dew or frost upon the ground. The days will be hot owing to the unimpeded solar radiation; the nights bitterly cold owing to the free radiation into space.

We may add that in such a climate the frost will descend principally upon the high ground at night time and in the advancing day it will melt. The freer radiation brings about this phenomenon among our own mountains in clear and calm weather.

With the progressive melting of the snow upon the pole Lowell connected many phenomena upon the planet's surface of much interest. The dark spaces appear to grow darker and more greenish. The canals begin to show themselves and reveal their double nature. All this suggests that the moisture liberated by the melting of the polar snow with the advancing year, is carrying vitality and springtime over the surface of the planet. But how is the water conveyed?

Lowell believes principally by the canals. These are constructed triangulating the surface of the planet in all directions. What we see, according to Lowell, is not the canal itself, but the broad band of vegetation which springs up on the arrival of the water. This band is perhaps thirty or forty miles wide, but perhaps much less, for Lowell reports that the better the conditions of observation the finer the lines appeared, so that they may be as narrow, possibly, as fifteen miles. It is to be remarked that a just visible dot on the surface of Mars must possess a diameter of 30 miles. But a chain of much smaller dots will be visible, just as we can see such fine objects as spiders' webs. The widening of the canals is then accounted for, according to Lowell, by the growth of a band of vegetation, similar to that which springs into existence when the floods of the Nile irrigate the plains of Egypt.

If no other explanation of the lines is forthcoming than that they are the work of intelligence, all this must be remembered. If all other theories fail us, much must be granted Lowell. We must not reason like fishes--as Lowell puts it--and deny that intelligent beings can thrive in an atmospheric pressure of four and half inches of mercury. Zurbriggen has recently got to the top of Aconcagua, a height of 24,000 feet. On the summit of such a mountain the barometer must stand at about ten inches. Why should not beings be developed by evolution with a lung capacity capable of living at two and a half times this altitude. Those steadily curved parallel lines are, indeed, very unlike anything we have experience of. It would be rather to be expected that another civilisation than our own would present many wide differences in its development.

What then is the picture we have before us according to Lowell? It is a sufficiently dramatic one.

Mars is a world whose water supply, never probably very abundant, has through countless years been drying up, sinking into his surface. But the inhabitants are making a brave fight for it, They have constructed canals right round their world so that the water, which otherwise would run to waste over the vast deserts, is led from oasis to oasis. Here the great centres of civilisation are placed: their Londons, Viennas, New Yorks. These gigantic works are the works of despair. A great and civilised world finds death staring it in the face. They have had to triple their canals so that when the central canal has done its work the water is turned into the side canals, in order to utilise it as far as possible. Through their splendid telescopes they must view our seas and ample rivers; and must die like travellers in the desert seeing in a mirage the cool waters of a distant lake.

Perhaps that lonely signal reported to have been seen in the twilight limb of Mars was the outcome of pride in their splendid and perishing civilisation. They would leave some memory of it: they would have us witness how great was that civilisation before they perish!

I close this dramatic picture with the poor comfort that several philanthropic people have suggested signalling to them as a mark of sympathy. It is said that a fortune was bequeathed to the French Academy for the purpose of communicating with the Martians. It has been suggested that we could flash signals to them by means of gigantic mirrors reflecting the light of our Sun. Or, again, that we might light bonfires on a sufficiently large scale. They would have to be about ten miles in diameter! A writer in the Pall Mall Gazette suggested that there need really be no difficulty in the matter. With the kind cooperation of the London Gas Companies (this was before the days of electric lighting) a signal might be sent without any additional expense if the gas companies would consent to simultaneously turn off the gas at intervals of five minutes over the whole of London, a signal which would be visible to the astronomers in Mars would result. He adds, naively: "If only tried for an hour each night some results might be obtained."

II

We have reviewed the theory of the artificial construction of the Martian lines. The amount of consideration we are disposed to give to the supposition that there are upon Mars other minds than ours will--as I have stated--necessarily depend upon whether or not we can assign a probable explanation of the lines upon purely physical grounds. If it is apparent that such lines would be formed with great probability under certain conditions, which conditions are themselves probable, then the argument by exclusion for the existence of civilisation on Mars, at once breaks down.

{Fig. 10}

As a romance writer is sometimes under the necessity of transporting his readers to other scenes, so I must now ask you to consent to be transported some millions of miles into the region of the heavens which lies outside Mars' orbit.

Between Mars and Jupiter is a chasm of 341 millions of miles. This gap in the sequence of planets was long known to be quite out of keeping with the orderly succession of worlds outward from the Sun. A society was formed at the close of the last century for the detection of the missing world. On the first day of the last century, Piazzi--who, by the way, was not a member of the society--discovered a tiny world in the vacant gap. Although eagerly welcomed, as better than nothing, it was a disappointing find. The new world was a mere rock. A speck of about 160 miles in diameter. It was obviously never intended that such a body should have all this space to itself. And, sure enough, shortly after, another small world was discovered. Then another was found, and another, and so on; and now more than 400 of these strange little worlds are known.

But whence came such bodies? The generally accepted belief is that these really represent a misbegotten world. When the Sun was younger he shed off the several worlds of our system as so many rings. Each ring then coalesced into a world. Neptune being the first born; Mercury the youngest born.

After Jupiter was thrown off, and the Sun had shrunk away inwards some 20o million miles, he shed off another ring. Meaning that this offspring of his should grow up like the rest, develop into a stable world with the potentiality even, it may be, of becoming the abode of rational beings. But something went wrong. It broke up into a ring of little bodies, circulating around him.

It is probable on this hypothesis that the number we are acquainted with does not nearly represent the actual number of past and present asteroids. It would take 125,000 of the biggest of them to make up a globe as big as our world. They, so far as they are known, vary in size from 10 miles to 160 miles in diameter. It is probable then--on the assumption that this failure of a world was intended to be about the mass of our Earth--that they numbered, and possibly number, many hundreds of thousands.

Some of these little bodies are very peculiar in respect to the orbits they move in. This peculiarity is sometimes in the eccentricity of their orbits, sometimes in the manner in which their orbits are tilted to the general plane of the ecliptic, in which all the other planets move.

The eccentricity, according to Proctor, in some cases may attain such extremes as to bring the little world inside Mars' mean distance from the sun. This, as you will remember, is very much less than his greatest distance from the sun. The entire belt of asteroids--as known--lie much nearer to Mars than to Jupiter.

As regards the tilt of their orbits, some are actually as much as 34 degrees inclined to the ecliptic, so that in fact they are seen from the Earth among our polar constellations.

From all this you see that Mars occupies a rather hot comer in the solar system. Is it not possible that more than once in the remote past Mars may have encountered one of these wanderers? If he came within a certain distance of the small body his great mass would sway it from its orbit, and under certain conditions he would pick up a satellite in this manner. That his present satellites were actually so acquired is the suggestion of Newton, of Yale College.

Mars' satellites are indeed suspiciously and most abnormally small. I have not time to prove this to you by comparison with the other worlds of the solar system. In fact, they were not discovered till 1877--although they were predicted in a most curious manner, with the most uncannily accurate details, by Swift.

One of these bodies is about 36 miles in diameter. This is Phobos. Phobos is only 3.700 miles from the surface of Mars. The other is smaller and further off. He is named Deimos, and his diameter is only 10 miles. He is 12,500 miles from Mars' surface. With the exception of Phobos the next smallest satellite known in the solar system is one of Saturn's--Hyperion; almost 800 miles in diameter. The inner one goes all round Mars in 71/2 hours. This is Phobos' month. Mars turns on his axis in 24 hours and 40 minutes, so that people in Mars would see the rise of Phobos twice in the course of a day and night; lie would apparently cross the sky going against the other satellite; that is, he would move apparently from west to east.

We may at least assume as probable that other satellites have been gathered by Mars in the past from the army of asteroids.

Some of the satellites so picked up would be direct: that is, would move round the planet in the direction of his axial rotation. Others, on the chances, would be retrograde: that is, would move against his axial rotation. They would describe orbits making the same various angles with the ecliptic as do the asteroids; and we may be sure they would be of the same varying dimensions.

We go on to inquire what would be the consequence to Mars of such captures.

A satellite captured in this manner is very likely to be pulled into the Planet. This is a probable end of a satellite in any case. It will probably be the end of our satellite too. The satellite Phobos is indeed believed to be about to take this very plunge into his planet. But in the case when the satellite picked up happens to be rotating round the planet in the opposite direction to the axial rotation of the planet, it is pretty certain that its career as a satellite will be a brief one. The reasons for this I cannot now give. If, then, Mars picked up satellites he is very sure to have absorbed them sooner or later. Sooner if they happened to be retrograde satellites, later if direct satellites. His present satellites are recent additions. They are direct.

The path of an expiring satellite will be a slow spiral described round the planet. The spiral will at last, after many years, bring the satellite down upon the surface of the primary. Its final approach will be accelerated if the planet possesses an atmosphere, as Mars probably does. A satellite of the dimensions of Phobos--that is 36 miles in diameter--would hardly survive more than 30 to 60 years within seventy miles of Mars' surface. It will then be rotating round Mars in an hour and forty minutes, moving, in fact, at the rate of 2.2 miles per second. In the course of this 30 or 60 years it will, therefore, get round perhaps 200,000 times, before it finally crashes down upon the Martians. During this closing history of the satellite there is reason to believe, however, that it would by no means pursue continually the same path over the surface of the planet. There are many disturbing factors to be considered. Being so small any large surface features of Mars would probably act to perturb the orbit of the satellite.

The explanation of Mars' lines which I suggest, is that they were formed by the approach of such satellites in former times. I do not mean that they are lines cut into his surface by the actual infall of a satellite. The final end of the satellite would be too rapid for this, I think. But I hope to be able to show you that there is reason to believe that the mere passage of the satellite, say at 70 miles above the surface of the planet, will, in itself, give rise to effects on the crust of the planet capable of accounting for just such single or parallel lines as we see.

In the first place we have to consider the stability of the satellite. Even in the case of a small satellite we cannot overlook the fact that the half of the satellite near the planet is pulled towards the planet by a gravitational force greater than that attracting the outer half, and that the centrifugal force is less on the inner than on the outer hemisphere. Hence there exists a force tending to tear the satellite asunder on the equatorial section tangential

{Fig. 11}

to the planet's surface. If in a fluid or plastic state, Phobos, for instance, could not possibly exist near the planet's surface. The forces referred to would decide its fate. It may be shown by calculation, however, that if Phobos has the strength of basalt or glass there would remain a considerable coefficient of safety in favour of the satellite's stability; even when the surfaces of planet and satellite were separated by only five miles.

We have now to consider some things which we expect will happen before the satellite takes its final plunge into the planet.

This diagram (Fig. 11) shows you the satellite travelling above the surface of the planet. The satellite is advancing towards, or away from, the spectator. The planet is supposed to show its solid crust in cross section, which may be a few miles in thickness. Below this is such a hot plastic magma as we have reason to believe underlies much of the solid crust of our own Earth. Now there is an attraction between the satellite and the crust of the planet; the same gravitational attraction which exists between every particle of matter in the universe. Let us consider how this attraction will affect the planet's crust. I have drawn little arrows to show how we may consider the attraction of the satellite pulling the crust of the planet not only upwards, but also pulling it inwards beneath the satellite. I have made these arrows longer where calculation shows the stress is greater. You see that the greatest lifting stress is just beneath the satellite, whereas the greatest stress pulling the crust in under the satellite is at a point which lies out from under the satellite, at a considerable distance. At each side of the satellite there is a point where the stress pulling on the crust is the greatest. Of the two stresses the lifting stress will tend to raise the crust a little; the pulling stress may in certain cases actually tear the crust across; as at A and B.

It is possible to calculate the amount of the stress at the point at each side of the satellite where the stress is at its greatest. We must assume the satellite to be a certain size and density; we must also assume the crust of Mars to be of some certain density. To fix our ideas on these points I take the case of the present satellite Phobos. What amount of stress will he exert upon the crust of Mars when he approaches within, say, 40 miles of the planet's surface? We know his size approximately--he is about 36 miles in diameter. We can guess his density to be between four times that of water and eight times that of water. We may assume the density of Mars' surface to be about the same as that of our Earth's surface, that is three times as dense as water. We now find that the greatest stress tending to rend open the surface crust of Mars will be between 4,000 and 8,000 pounds to the square foot according to the density we assign to Phobos.

Will such a stress actually tear open the crust? We are not able to answer this question with any certainty. Much will depend upon the nature and condition of the crust. Thus, suppose that we are here (Fig. 12) looking down upon the satellite which is moving along slowly relatively to Mars' surface, in the direction of the arrow. The satellite has just passed over a weak and cracked part of the planet's crust. Here the stress has been sufficient to start two cracks. Now you know how easy it is to tear a piece of cloth when you go to the edge of it in order to make a beginning. Here the stress from the satellite has got to the edge of the crust. It is greatly concentrated just at the extremities of the cracks. It will, unler such circumstances probably carry on the tear. If it does not do so this time, remember the satellite will some hours later be coming over the same place again, and then again for, at least, many hundreds of times. Then also we are not limited to the assumption that the satellite is as small as Phobos. Suppose we consider the case of a satellite approaching Mars which has a diameter double that of Phobos; a diameter still much less than that of the larger class of asteroids. Even at the distance of 65 miles the stress will now amount to as much as from 15 to 30 tons per square foot. It is almost certain that such a stress repeated a comparatively few times over the same parts of the planet's surface would so rend the crust as to set up lines along which plutonic action would find a vent. That is, we might expect along these lines all the phenomena of upheaval and volcanic eruption which give rise to surface elevations.

The probable effect of a satellite of this dimension travelling slowly relatively to the surface of Mars is, then, to leave a very conspicuous memorial of his presence behind him. You see from the diagram that this memorial will consist o: two parallel lines of disturbance.

The linear character of the gravitational effects of the satellite is due entirely to the motion of the satellite relatively to the surface of the planet. If the satellite stood still above the surface the gravitational stress in the crust would, of course, be exerted radially outwards from the centre of the satellite. It would attain at the central point beneath the satellite its maximum vertical effect, and at some radial distance measured outwards from this point, which distance we can calculate, its maximum horizontal tearing effect. When the satellite moves relatively to the planet's crust, the horizontal tearing force acts differently according to whether it is directed in the line of motion or at right angles to this line.

In the direction of motion we see that the satellite creates as it passes over the crust a wave of rarefaction or tension as at D, followed by compression just beneath the satellite and by a reversed direction of gravitational pull as the satellite passes onwards. These stresses rapidly replace one another as the satellite travels along. They are resisted by the inertia of the crust, and are taken up by its elasticity. The nature of this succession of alternate compressions and rarefactions in the crust possess some resemblance to those arising in an earthquake shock.

If we consider the effects taking place laterally to the line of motion we see that there are no such changes in the nature of the forces in the crust. At each passage of the satellite the horizontal tearing stress increases to a maximum, when it is exerted laterally, along the line passing through the horizontal projection of the satellite and at right angles to the line of motion, and again dies away. It is always a tearing stress, renewed again and again.

This effect is at its maximum along two particular parallel lines which are tangents to the circle of maximum horizontal stress and which run parallel with the path of the satellite. The distance separating these lines depend upon the elevation of the satellite above the planet's surface. Such lines mark out the theoretical axes of the "double canals" which future crustal movements will more fully develop.

It is interesting to consider what the effect of such conditions would be if they arose at the surface of our own planet. We assume a horizontal force in the crust adequate to set up tensile stresses of the order, say, of fifteen tons to the square foot and these stresses to be repeated every few hours; our world being also subject to the dynamic effects we recognise in and beneath its crust.

It is easy to see that the areas over which the satellite exerted its gravitational stresses must become the foci --foci of linear form--of tectonic developments or crust movements. The relief of stresses, from whatever cause arising, in and beneath the crust must surely take place in these regions of disturbance and along these linear areas. Here must become concentrated the folding movements, which are under existing conditions brought into the geosynclines, along with their attendant volcanic phenomena. In the case of Mars such a concentration of tectonic events would not, owing to the absence of extensive subaerial denudation and great oceans, be complicated by the existence of such synclinal accumulations as have controlled terrestrial surface development. With the passage of time the linear features would probably develop; the energetic substratum continually asserting its influence along such lines of weakness. It is in the highest degree probable that radioactivity plays no less a part in Martian history than in terrestrial. The fact of radioactive heating allows us to assume the thin surface crust and continued sub-crustal energy throughout the entire period of the planet's history.

How far willl these effects resemble the double canals of Mars? In this figure and in the calculations I have given you I have supposed the satellite engaged in marking the planet's surface with two lines separated by about the interval separating the wider double canals of Mars--that is about 220 miles apart. What the distance between the lines will be, as already stated, will depend upon the height of the satellite above the surface when it comes upon a part of the crust in a condition to be affected by the stresses it sets up in it. If the satellite does its work at a point lower down above the surface the canal produced will be narrower. The stresses, too, will then be much greater. I must also observe that once the crust has yielded to the pulling stress, there is great probability that in future revolutions of the satellite a central fracture will result. For then all the pulling force adds itself to the lifting force and tends to crush the crust inwards on the central line beneath the satellite. It is thus quite possible that the passage of a satellite may give rise to triple lines. There is reason to believe that the canals on Mars are in some cases triple.

I have spoken all along of the satellite moving slowly over the surface of Mars. I have done so as I cannot at all pronounce so readily on what will happen when the satellite's velocity over the surface of Mars is very great. To account for all the lines mapped by Lowell some of them must have been produced by satellities moving relatively to the surface of Mars at velocities so great as three miles a second or even rather more. The stresses set up are, in such cases, very difficult to estimate. It has not yet been done. Parallel lines of greatest stress or impulse ought to be formed as in the other case.

I now ask your attention to another kind of evidence that the lines are due in some way to the motion of satellites passing over the surface of Mars.

I may put the fresh evidence to which I refer, in this way: In Lowell's map (P1. XXII, p. 192), and in a less degree in Schiaparelli's map (ante p. 166), we are given the course of the lines as fragments of incomplete curves. Now these curves might have been anything at all. We must take them as they are, however, when we apply them as a test of the theory that the motion of a satellite round Mars can strike such lines. If it can be shown that satellites revolving round Mars might strike just such curves then we assume this as an added confirmation of the hypothesis.

We must begin by realising what sort of curves a satellite which disturbs the surface of a planet would leave behind it after its demise. You might think that the satellite revolving round and round the planet must simply describe a circle upon the spherical surface of the planet: a "great circle" as it is called; that is the greatest circle which can be described upon a sphere. This great circle can, however, only be struck, as you will see, when the planet is not turning upon its axis: a condition not likely to be realised.

This diagram (PI. XXI) shows the surface of a globe covered with the usual imaginary lines of latitude and longitude. The orbit of a supposed satellite is shown by a line crossing the sphere at some assumed angle with the equator. Along this line the satellite always moves at uniform velocity, passing across and round the back of the sphere and again across. If the sphere is not turning on its polar axis then this satellite, which we will suppose armed with a pencil which draws a line upon the sphere, will strike a great circle right round the sphere. But the sphere is rotating. And it is to be expected that at different times in a planet's history the rate of rotation varies very much indeed. There is reason to believe that our own day was once only 21/2 hours long, or thereabouts. After a preliminary rise in velocity of axial rotation, due to shrinkage attending rapid cooling, a planet as it advances in years rotates slower and slower. This phenomenon is due to tidal influences of the sun or of satellites. On the assumption that satellites fell into Mars there would in his case be a further action tending to shorten his day as time went on.

The effect of the rotation of the planet will be, of course, that as the satellite advances with its pencil it finds the surface of the sphere being displaced from under it. The line struck ceases to be the great circle but wanders off in another curve--which is in fact not a circle at all.

You will readily see how we find this curve. Suppose the sphere to be rotating at such a speed that while the satellite is advancing the distance _Oa_, the point _b_ on the sphere will be carried into the path of the satellite. The pencil will mark this point. Similarly we find that all the points along this full curved line are points which will just find themselves under the satellite as it passes with its pencil. This curve is then the track marked out by the revolving satellite. You see it dotted round the back of the sphere to where it cuts the equator at a certain point. The course of the curve and the point where it cuts the equator, before proceeding on its way, entirely depend upon the rate at which we suppose the sphere to be rotating and the satellite to be describing the orbit. We may call the distance measured round the planet's equator separating the starting point of the curve from the point at which it again meets the equator, the "span" of the curve. The span then depends entirely upon the rate of rotation of the planet on its axis and of the satellite in its orbit round the planet.

But the nature of events might have been somewhat different. The satellite is, in the figure, supposed to be rotating round the sphere in the same direction as that in which the sphere is turning. It might have been that Mars had picked up a satellite travelling in the opposite direction to that in which he was turning. With the velocity of planet on its axis and of satellite in its orbit the same as before, a different curve would have been described. The span of the curve due to a retrograde satellite will be greater than that due to a direct satellite. The retrograde satellite will have a span more than half way round the planet, the direct satellite will describe a curve which will be less than half way round the planet: that is a span due to a retrograde satellite will be more than 180 degrees, while the span due to a direct satellite will be less than 180 degrees upon the planet's equator.

I would draw your attention to the fact that what the span will be does not depend upon how much the orbit of the satellite is inclined to the equator. This only decides how far the curve marked out by the satellite will recede from the equator.

We find then, so far, that it is easy to distinguish between the direct and the retrograde curves. The span of one is less, of the other greater, than 180 degrees. The number of degrees which either sort of curve subtends upon the equator entirely depends upon the velocity of the satellite and the axial velocity of the planet.

But of these two velocities that of the satellite may be taken as sensibly invariable, when close enough to use his pencil. This depends upon the law of centrifugal force, which teaches us that the mass of the planet alone decides the velocity of a satellite in its orbit at any fixed distance from the planet's centre. The other velocity--that of the planet upon its axis--was, as we have seen, not in the past what it is now. If then Mars, at various times in his past history, picked up satellites, these satellites will describe curves round him having different spans which will depend upon the velocity of axial rotation of Mars at the time and upon this only.

In what way now can we apply this knowledge of the curves described by a satellite as a test of the lunar origin of the lines on Mars?

To do this we must apply to Lowell's map. We pick out preferably, of course, the most complete and definite curves. The chain of canals of which Acheron and Erebus are members mark out a fairly definite curve. We produce it by eye, preserving the curvature as far as possible, till it cuts the equator. Reading the span on the equator we find' it to be 255 degrees. In the first place we say then that this curve is due to a retrograde satellite. We also note on Lowell's map that the greatest rise of the curve is to a point about 32 degrees north of the equator. This gives the inclination of the satellite's orbit to the plane of Mars' equator.

With these data we calculate the velocity which the planet must have possessed at the time the canal was formed on the hypothesis that the curve was indeed the work of a satellite. The final question now remains If we determine the curve due to this velocity of Mars on its axis, will this curve fit that one which appears on Lowell's map, and of which we have really availed ourselves of only three points? To answer this question we plot upon a sphere, the curve of a satellite, in the manner I have described, assigning to this sphere the velocity derived from the span of 255 degrees. Having plotted the curve on the sphere it only remains to transfer it to Lowell's map. This is easily done.

This map (Pl. XXII) shows you the result of treating this, as well as other curves, in the manner just described. You see that whether the fragmentary curves are steep and receding far from the equator; or whether they are flat and lying close along the equator; whether they span less or more than 180 degrees; the curves determined on the supposition that they are the work of satellites revolving round Mars agree with the mapped curves; following them with wonderful accuracy; possessing their properties, and, indeed, in some cases, actually coinciding with them.

I may add that the inadmissible span of 180 degrees and spans very near this value, which are not well admissible, are so far as I can find, absent. The curves are not great circles.

You will require of me that I should explain the centres of radiation so conspicuous here and there on Lowell's map. The meeting of more than two lines at the oases is a phenomenon possibly of the same nature and also requiring explanation.

In the first place the curves to which I have but briefly referred actually give rise in most cases to nodal, or crossing points; sometimes on the equator, sometimes off the equator; through which the path of the satellite returns again and again. These nodal points will not, however, afford a general explanation of the many-branched radiants.

It is probable that we should refer such an appearance as is shown at the Sinus Titanum to the perturbations of the satellite's path due to the surface features on Mars. Observe that the principal radiants are situated upon the boundary of the dark regions or at the oases. Higher surface levels may be involved in both cases. Some marked difference in topography must characterise both these features. The latter may possibly originate in the destruction of satellites. Or again, they may arise in crustal disturbance of a volcanic nature, primarily induced or localised by the crossing of two canals. Whatever the origin of these features it is only necessary to assume that they represent elevated features of some magnitude to explain the multiplication of crossing lines. We must here recall what observers say of the multiplicity of the canals. According to Lowell, "What their number maybe lies quite beyond the possibility of count at present; for the better our own air, the more of them are visible."

Such innumerable canals are just what the present theory requires. An in-falling satellite will, in the course of the last 60 or 80 years of its career, circulate some 100,000 times over Mars' surface. Now what will determine the more conspicuous development of a particular canal? The mass of the satellite; the state of the surface crust; the proximity of the satellite; and the amount of repetition over the same ground. The after effects may be taken as proportional to the primary disturbance.

It is probable that elevated surface features will influence two of these conditions: the number of repetitions and the proximity to the surface. A tract 100 miles in diameter and elevated 5,000 or 10,000 feet would seriously perturb the orbit of such a body as Phobos. It is to be expected that not only would it be effective in swaying the orbit of the satellite in the horizontal direction but also would draw it down closer to the surface. It is even to be considered if such a mass might not become nodal to the satellite's orbit, so that this passed through or above this point at various inclinations with its primary direction. If acting to bring down the orbit then this will quicken the speed and cause the satellite further on its path to attain a somewhat higher elevation above the surface. The lines most conspicuous in the telescope are, in short, those which have been favoured by a combination of circumstances as reviewed above, among which crustal features have, in some cases, played a part.

I must briefly refer to what is one of the most interesting features of the Martian lines: the manner in which they appear to come and go like visions.

Something going on in Mars determines the phenomenon. On a particular night a certain line looks single. A few nights later signs of doubling are perceived, and later still, when the seeing is particularly good, not one but two lines are seen. Thus, as an example, we may take the case of Phison and Euphrates. Faint glimpses of the dual state were detected in the summer and autumn, but not till November did they appear as distinctly double. Observe that by this time the Antarctic snows had melted, and there was in addition, sufficient time for the moisture so liberated to become diffused in the planet's atmosphere.

This increase in the definition and conspicuousness of certain details on Mars' surface is further brought into connection with the liberation of the polar snows and the diffusion of this water through the atmosphere, by the fact that the definition appeared progressively better from the south pole upwards as the snow disappeared. Lowell thinks this points to vegetation springing up under the influence of moisture; he considers, however, as we have seen, that the canals convey the moisture. He has to assume the construction of triple canals to explain the doubling of the lines.

If we once admit the canals to be elevated ranges--not necessarily of great height--the difficulty of accounting for increased definition with increase of moisture vanishes. We need not necessarily even suppose vegetation concerned. With respect to this last possibility we may remark that the colour observations, upon which the idea of vegetation is based, are likely to be uncertain owing to possible fatigue effects where a dark object is seen against a reddish background.

However this may be we have to consider what the effects of moisture increasing in the atmosphere of Mars will be with regard to the visibility of elevated ranges, We assume a serene and rare atmosphere: the nights intensely cold, the days hot with the unveiled solar radiation. On the hill tops the cold of night will be still more intense and so, also, will the solar radiation by day. The result of this state of things will be that the moisture will be precipitated mainly on the mountains during the cold of night--in the form of frost--and during the day this covering of frost will melt; and, just as we see a heavy dew-fall darken the ground in summer, so the melting ice will set off the elevated land against the arid plains below. Our valleys are more moist than our mountains only because our moisture is so abundant that it drains off the mountains into the valleys. If moisture was scarce it would distil from the plains to the colder elevations of the hills. On this view the accentuation of a canal is the result of meteorological effects such as would arise in the Martian climate; effects which must be influenced by conditions of mountain elevation, atmospheric currents, etc. We, thus, follow Lowell in ascribing the accentuation of the canals to the circulation of water in Mars; but we assume a simple and natural mode of conveyance and do not postulate artificial structures of all but impossible magnitude. That vegetation may take part in the darkening of the elevated tracts is not improbable. Indeed we would expect that in the Martian climate these tracts would be the only fertile parts of the surface.

Clouds also there certainly are. More recent observations appear to have set this beyond doubt. Their presence obviously brings in other possible explanations of the coming and going of elevated surface features.

Finally, we may ask what about the reliability of the maps? About this it is to be said that the most recent map--that by Lowell--has been confirmed by numerous drawings by different observers, and that it is,itself the result of over 900 drawings. It has become a standard chart of Mars, and while it would be rash to contend for absence of errors it appears certain that the trend of the principal canals may be relied on, as, also, the general features of the planet's surface.

The question of the possibility of illusion has frequently been raised. What I have said above to a great extent answers such objections. The close agreement between the drawings of different observers ought really to set the matter at rest. Recently, however, photography has left no further room for scepticism. First photographed in 1905, the planet has since been photographed many thousands of times from various observatories. A majority of the canals have been so mapped. The doubling of the canals is stated to have been also so recorded.

The hypothesis which I have ventured to put before you involves no organic intervention to account for the details on Mars' surface. They are physical surface features. Mars presents his history written upon his face in the scars of former encounters--like the shield of Sir Launcelot. Some of the most interesting inferences of mathematical and physical astronomy find a confirmation in his history. The slowing down in the rate of axial rotation of the primary; the final inevitable destruction of the satellite; the existence in the past of a far larger number of asteroids than we at present are acquainted with; all these great facts are involved in the theory now advanced. If justifiably, then is Mars' face a veritable Principia.

To fully answer the question which heads these lectures, we should go out into the populous solitudes (if the term be permitted) which lie beyond our system. It is well that there is now no time left to do so; for, in fact, there we can only dream dreams wherein the limits of the possible and the impossible become lost.

The marvel of the infinite number of stars is not so marvellous as the rationality that fain would comprehend them. In seeking other minds than ours we seek for what is almost infinitely complex and coordinated in a material universe relatively simple and heterogeneous. In our mental attitude towards the great question, this fact must be regarded as fundamental.

I can only fitly close a discourse which has throughout weighed the question of the living thought against the unthinking laws of matter, by a paraphrase of the words of a great poet when he, in higher and, perhaps, more philosophic language, also sought to place the one in comparison with the other.[1]


[1] De Quincy in his _System of the Heavens_ gives a fine paraphrase of "Richter's Dream."


Richter thought that he was--with his human heart unstrengthened--taken by an angel among the universe of stars. Then, as they journeyed, our solar system was sunken like a faint star in the abyss, and they travelled yet further, on the wings of thought, through mightier systems: through all the countless numbers of our galaxy. But at length these also were left behind, and faded like a mist into the past. But this was not all. The dawn of other galaxies appeared in the void. Stars more countless still with insufferable light emerged. And these also were passed. And so they went through galaxies without number till at length they stood in the great Cathedral of the Universe. Endless were the starry aisles; endless the starry columns; infinite the arches and the architraves of stars. And the poet saw the mighty galaxies as steps descending to infinity, and as steps going up to infinity.

Then his human heart fainted and he longed for some narrow cell; longed to lie down in the grave that he might hide from infinity. And he said to the angel:

"Angel, I can go with thee no farther. Is there, then, no end to the universe of stars?"

Then the angel flung up his glorious hands to the heaven of heavens, saying "End is there none to the universe of God? Lo! also there is no beginning."



[The end]
John Joly's Essay: Other Minds Than Ours?

________________________________________________



GO TO TOP OF SCREEN